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Abstract

Next generation integrated nanophotonic devices must fabricate large numbers of

nanoscaled light coupling structures onto a single wafer: emitters such as quantum

dots, resonators such as nanocavities and plasmonic nanoparticles, photonic crystal

and nano-plasmonic waveguides, among others. Before precision planning and engi-

neering will be possible a thorough understanding of the interaction between these

structures must be documented. We present in this work an investigation of the

interaction between quantum dots and plasmonic structures in the weak coupling

regime. We found that surface plasmon supporting silver structures placed about

100nm from InGaAs quantum dots enabled an all optical polarization dependent

switching mechanism between different exciton charge states when exciting above

the band gap energy of the encapsulating GaAs. Furthermore, when exciting below

the band gap of GaAs, we found a reduction in the photoluminescence intensity due

to the launching of surface plasmon polaritons (SPPs) on the silver surfaces.
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Chapter 1

Introduction

In this chapter, I will attempt to provide to the reader some motivation for interest

in nanophotonics in general and especially the research topics presented in this work,

as the potential for technological innovation is staggering. I will begin in the first

section by talking about the current state of information processing technologies,

and the limits imposed upon them by nature. This is a particularly relevant topic, as

computers are entrenched in everyday life, and most people should be able to relate to

the discussion. In the second section, we will discuss some of the proposed solutions

to getting around these limits to push this kind of technology forward into a new

age and bypass the imminent stagnation. Finally, I will attempt to provide further

motivation for nanophotonics in general by talking about other applications of the

technology. It is not limited to the information processing technologies discussed in

the first two sections, and exciting exotic devices have been proposed and prototypes

built. Hopefully after this chapter, you will have an interest in this field of research

and an appreciation for the possibilities it offers for future technologies. At the end

of the chapter, I have written a summary of the structure of this document.

1.1 Pushing the limits of current technology

The digital age followed the invention of the microcomputer. Information, in place

of material products, has formed an entirely new class of commodity. The explosive

growth rate of information processing and harvesting technologies has been powered

by advancements in nanofabrication techniques. Currently these devices are powered
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almost universally by silicon which is cheap, abundant, safe, and now has an entire

manufacturing base established around it. This massive growth was described in 1965

by Intel co-founder Gordon Moore [1]. Moore’s Law describes the exponential growth

rate of transistor density in integrated circuits over time. As is typical with techno-

logical market innovations, the price of these devices has also fallen precipitously,

especially when accounting for hedonic adjustments. This boom in computing power

combined with the collapse in price made the power of digital computation ubiquitous,

transforming society, for better and worse, in many respects.

Fast forward 53 years, and prognostications for the end of Moore’s law abound

[2, 3, 4, 5, 6, 7]. Some of the common reasons given are thermal noise, switching

unreliability, untenable crosstalk at high frequencies, and increased manufacturing

complexity. While silicon engineering firms are not giving up easily, it is becoming

increasingly clear that the end is near. As many people are looking forward to the

end of the era of traditional silicon devices, the search is on for new technologies to

power the next generation of information processing devices.

The fundamental building block for electrical logic devices is the metal-oxide-

semiconductor field effect transistor (MOSFET). This is formed by deposition of a

metallic gate onto silicon, which has formed an oxide layer under controlled conditions.

The oxide provides a potential barrier which limits electrical conductivity. However,

the application of an electric potential can increase the conductivity. An external

voltage, even a relatively small one, can control the flow of even a large current.

Thus, there is a switching action and gain. From this many different kinds of devices

can be constructed, such as integrated logic circuits and solid state amplifiers.

Thermal noise is a problem in MOS switches as it is competing against the oxide

barrier energy, which must be large by comparison to maintain reliable switching and

low current leakage. There are two headwinds against maintaining this relationship

for proper device functionality. First, all else being equal, cramming more switches

2
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into a single device raises the requirement of heat dissipation due to the basic laws of

thermodynamics. One strategy to lower the heat production per transistor is to thin

the oxide barrier, using smaller currents and weaker fields. However, this strategy has

reached its limits [8]. For the standard CPU microprocessor, operating frequencies

have also begun to level off as generated heat increases superlinearly with them.

The CPU industry has adopted the paradigm of multiple integrated circuits (ICs) or

cores in a single chip to scale around this problem, however this raises other issues as

software must then be designed to run in parallel.

Crosstalk results from mutual inductance and capacitance in the conductive struc-

tures carrying the currents. Signals flow through an IC along conductive traces. One

trace can feel the influence of the signal running through a nearby trace, disrupting

the signal and potentially leading to data loss. For example, a current through one

trace emanates a magnetic field which disrupts a current flowing nearby due to the

Hall effect. This problem is exacerbated at higher frequencies also.

Engineering ingenuity has allowed Moore’s law to march on, despite a number

of technical challenges in the mass production of these devices. However there are

signs this is slowing also. An increased manufacturing cost can help drive innovation

in other competing technologies which were previously constrained by the economics

of scale of the entrenched silicon MOS manufacturing infrastructure. For example,

gallium arsenide (GaAs) has no native oxide, but does produce a Schottky barrier

at the interface with certain metals. Metal-semiconductor field effect transistors

(MESFETs) which use Schottky barriers on GaAs, instead of the oxide barriers used in

silicon MOS devices, have lower power consumption and less noise while operating at

higher frequencies than silicon MOSFETs. In the late 1980s, Seymour Cray switched

the design of the CPU for his Cray 3 supercomputer from Si to GaAs for these reasons.

GaAs (and many other III-V semiconductors) has a number of advantages over

silicon. It has a higher electron mobility, leading to low power, low noise, and high
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switching speed operation. Unlike silicon, it is also a direct bandgap semiconduc-

tor, allowing efficient coupling into photonic modes for optoelectronics applications.

However it also has some disadvantages as well. Gallium is more rare than gold,

and expensive. Arsenic is also highly toxic, but GaN is also gaining a lot of research

interest. Also the fabrication infrastructure is not as advanced as the silicon industry,

but it is possible this may change as the limits of silicon based devices are reached.

While such devices may be faster, GaAs electronics devices will have their own

limits as well, as these limits are inherent in the nature of electron transport, not

the semiconductor material itself. This is a limit imposed by nature on the nonlinear

behavior of electrons. GaAs technology though can do some things silicon cannot. It

can provide a better pivot from electrons to photons as carriers of information, whose

linear behavior dramatically increases the possibility for data throughput.

None of this should be construed as a claim that the traditional silicon processor

will die or even that it will not continue to improve, but the rate of improvement

is expected to decline. Further improvements may focus on aspects other than raw

computational power such as: lower power consumption, lower price, a move towards

application specific hardware rather than generalized computation, and better inte-

gration of independent devices. However, now that it is a mature technology with

a rate of improvement that appears to be saturating, research should start to focus

more earnestly on alternatives which may be able to surpass its limitations.

For the physicist the end of Moore’s Law is intuitive, since quantum mechanics

is assumed to be the ultimate law of nature at the fundamental level while CMOS

transistors can be described as essentially classical devices. Either current is flowing

or it isn’t. There is no need for consideration of quantum effects like superposition or

coherence. As the components of integrated circuits shrink to a certain point however,

quantum effects can no longer be ignored and will eventually come to dominate. An

electron in a single atom simply cannot be described classically.

4



www.manaraa.com

1.2 Information processing devices for the new era

As this paradigm shift nears, a significant effort has been put into research efforts

to find the ideal candidates for future information processing devices. A number of

possible solutions have been put forth, each with their own pros and cons, and it is

likely different devices will be produced for different use cases. In this section I will

quickly review some of these device candidates and talk about some of their strengths

and weaknesses.

1.2.1 Massive parallelization

The first response against the decline in the rate of improvement of information

processing devices is decentralization of the computational process via massive paral-

lelization. This is indeed one of the main approaches the industry has taken and has

been successful to some extent, but this approach comes with several complications.

Processors each access and modify their own memory stores, and these separate data

structures must maintain a shared state when modified by one of the processing units.

This complicates the structure of algorithms, sometimes significantly. While this can

work well for running several separate tasks at once, or single tasks where the work

can be easily split into smaller chunks and distributed, some algorithms are just not

amenable to parallelization at all.

1.2.2 Superconducting computing

Superconductors provide a possibility for bypassing thermal limits to improved per-

formance. By dropping the electrical resistance to essentially zero, heat generation

is no longer a problem. Josephson junctions could take the place of CMOS switches,

and very high frequency operation may be possible. However, the main drawback

is that most of the superconductive materials discovered do not exhibit the phe-

nomenon above cryogenic temperatures. The cost therefore quickly scales well past
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a level of affordability for mass production. However, there is much research on high

temperature superconducting materials, so this may be a viable path one day.

1.2.3 Quantum computing

One solution to the problem of nondeterministic, probabilistic switching is to simply

embrace it. A quantum computer is an information processor which operates fully

on the principles of quantum mechanics, itself a probabilistic theory, at least in the

standard interpretation. Quantum bits, or qubits, are no longer digital binary con-

structs, 1s and 0s, but can exist in linear superposition of these on and off states like

Schrödinger’s cat.

These states exhibit the full SU(2) symmetry, which opens up an entirely new

world of computing. Logic gates which operate on classical bits also output classical

bits, 1 or 0. Quantum gate operations can be represented by some unitary matrix

operator. The states are now represented by a 2-dimensional basis of eigenstates, |0⟩

and |1⟩. An input of, e.g., |1⟩ may output anything in the 2-D Hilbert space, perhaps

neither |0⟩ nor |1⟩ but some combination like 1√
2(|0⟩ + |1⟩).

It has been shown that such a computer, using quantum algorithms appropriate

for the hardware, can reduce the complexity class of certain algorithms compared to

their known classical counterparts. The prototypical example is the factorization of

large prime numbers which takes exponential time on a classical computer, but was

shown to take polynomial time with Shor’s algorithm [9]. This has implications in

fields such as cryptography, where some security algorithms rely on the infeasibility

of factoring large prime numbers to secure data.

While quantum gates have been constructed, no quantum computer has yet per-

formed a task faster than a classical computer. The main obstacle to overcome is

the dephasing of the quantum system which results in irreversible data loss. Any

algorithm therefore must run quickly on this timescale, which is often very short,
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especially if the system is not operating at cryogenic temperatures.

The quantum computer is only fully realized with specialized quantum algorithms.

In fact, it has been shown that the set of classical algorithms which can gain a speed

increase with a quantum computer has measure zero [10]. Thus, while it may be

useful as a specialized device which can perform a certain class of specialized functions

very well, the quantum computer is unlikely to replace traditional computers until

considerable computational theory has been developed to take advantage of the new

hardware paradigm. Generalized quantum computing may therefore be a long way

off into the future.

1.2.4 Photonics

Another information technology strategy, which is already widely employed, is pho-

tonics. Photonic devices use light rather than charge currents to transmit informa-

tion. When not coupled to matter, the electromagnetic field is highly linear, up to the

Schwinger limit which is enormous. This allows photons to be stacked on top of each

other without interactions, enabling signal processing techniques like multiplexing

which significantly increase the data throughput available in a waveguide compared

to the signals running through interconnects on integrated circuits, which are essen-

tially a series of current pulses. This can be done with modulated AC currents also

which can then be converted back into a digital signal, but fiber optic cables tend to

perform slightly better still. Large scale networks like the internet are built on such

fiber optic networks.

It is not just data transmission however. Rates of data processing also have

potential to be much higher than electronic devices. The lack of Joule heating when

moving photons around allows extremely high frequencies at suitable temperatures.

Furthermore, the linear nature of photon transmission avoids the crosstalk problem.

To this end, the idea was proposed back in the 1970s to build all optical switch using
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nonlinear optical components, in analog to the transistor [11]. Such devices have

since been built [12, 13, 14, 15]. All optical logic gates [16, 17, 18] have also been

constructed using photonic crystals.

Integration with existing electronic devices through optoelectronic conversion will

hamper some of the possible performance gains. However the largest obstacle to an

all optical computer is the large footprint of optical devices. While electronics are

still in the process of approaching their size limit, traditional optics are limited by

diffraction to a much larger size, a barrier which was hit long ago. Thus this strategy

does not scale well with the trend toward smaller device footprints, and gains in

component speed are offset by losses in component density.

1.2.5 Nanophotonics

This technique is a sort of hybridization of photonics and electronics which involves

heavy light-matter interaction. Nanophotonics exploits the near field effect in systems

of light coupled to charge carriers. Near field modes produces evanescent electromag-

netic waves, i.e. they do not radiate into a far field pattern like traditional antennae

which are meant to function at large distances. The non-radiative nature of this type

of emission means that these fields are no longer transform limited, but can produce

very large electromagnetic fields and field gradients in very small spaces. This then

allows the possibility of using photons as information carriers, while maintaining the

smaller footprint of electronic devices.

This of course comes with some sacrifices inherent in the light-matter coupling.

As a result of this coupling, this mode of transmission is inherently lossy. However if

this limitation can be overcome, perhaps through the implementation of some kind of

gain, the possibility exists for integrated circuits with the operating performance at or

near traditional photonic devices, but the footprint of traditional electronic devices.

This thesis will focus on this type of device.
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We have studied the phenomenon of the surface plasmon polariton (SPP), an

evanescent electromagnetic wave occurring at the surface of a metal, strongly coupled

to oscillations in its charge density, and confined to the interface between the metal

and a dielectric. We fabricated structures to sustain such waves and placed them near

self assembled quantum dot (QD) structures. The latter serve as single photon sources

which may one day provide the gain necessary to overcome the lossy nature of SPP

propagation. Before such exotic devices can be considered however, the interaction

between the two systems must first be well understood. The goal of this research is

to make some progress in that direction.

1.3 Nanophotonics and its applications

The first paper published demonstrating the effects of surface plasmons was at the

beginning of the 20th century, all the way back in 1902. Robert wood observed an

anomalous drop in the intensity of light scattered off of metal-backed diffraction grat-

ings when illuminated at particular angles [19]. The phenomenon known as Wood’s

anomalies spurred theoretical interest which eventually led to the theory of surface

plasmons. Although this has been known for some time, it wasn’t until the advent of

modern fabrication techniques allowed the deliberate control of such waves that new

optical devices were designed to exploit them.

The potential for nanophotonic technology is by no means limited to computa-

tional or information processing devices either. Already prototypes using plasmonic

resonators have demonstrated various other functionalities including: metamaterials

[20, 21, 22, 23], nanoscaled sensors [24, 25, 26, 27], sub-diffraction optical compo-

nents and imaging [28, 29, 30], improved solar cells and light harvesting [31, 32, 33,

34, 35, 36, 37, 38], biomedical applications and disease treatment [39, 40, 41, 42],

This technology will be useful in these and any other applications where guiding and

manipulation of light at the nanometer scale is desired.
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While plasmonic structures have been effectively used for guiding light at this

scale, quantum dots (QDs) provide excellent narrow band single photon sources at the

nanoscale. The discreteness of the luminescent emission from QDs is a feature of the

total confinement of their charge carriers, electrons, holes, and especially electron-hole

pairs (excitons) which emit light when they combine with each other. Semiconductor

QDs in particular are stable and robust and offer repeatable on demand generation

of indistinguishable photons in the visible and near-infrared range [43, 44, 45, 46, 47].

It is also possible for coherent manipulations within the dot, making them candidates

for implementation of qubits for quantum computing [48, 49, 50, 51, 52, 53, 54, 55].

They also offer an excellent tunability of their optical resonance during fabrication due

to the quantum size effect. Decreasing the size of the dot decreases the separation

of the wavefunctions of the electron and hole, increasing their binding energy and

ultimately the energy, and therefore color, of the emitted photon.

The QDs used in this research self-assemble in the core-shell structure, small

nanocrystals of a smaller bandgap material are fully encapsulated by a material with

a larger bandgap. However, such dots, once fabricated and thus encapsulated inside a

wafer, offer little potential for altering the potential landscape thereafter. The degree

of active control available to the end user is thus somewhat limited. One idea around

this is to use a different strategy to define the QD. Gate-defined dots can be formed

on from single material wafers using external electrical contacts whose fields form

electrostatic traps that confine charge carriers [56, 57, 58]. Such gate-defined QDs

offer additional flexibility but are still limited by the speed of the electronics and

more complex fabrication, among other issues.

A possibility for additional control over our self-assembled QDs is to use external

electric or magnetic fields to alter the internal dynamics of the dot. The samples

studied in this thesis are fabricated in the Schottky diode structure, providing an

electrical gate for this purpose. The dots are not defined by the gate, but band
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bending effects can alter their luminescent emission. Again though, under active

control by this method, device performance would be ultimately constrained by the

electronic switching speed.

It is also possible to alter the behavior of the photoluminescence of QDs with

the introduction of nearby plasmonic structures. The SPP modes supported on such

structures provide large local electric fields and electric field gradients, arising entirely

from optical excitation. Moreover the change in the local optical density of states

can change the exciton relaxation pathways of the QDs, leading to some control over

QD photoluminescence: an enhanced rate of radiative exciton recombination [59, 60,

61, 62], a suppression of radiative recombination [62, 63, 64], and alteration of the

spatial emission profile [65, 66, 67]. The interaction between these two systems must

be well understood before engineering of complex integrated devices will be possible.

It would be highly desirable to obtain a method for an entirely optical tunability

of QD emission. We have fabricated a sample implanting plasmonic structures into a

semiconductor QD wafer to get a better understanding of their interaction. The work

presented in this thesis demonstrates an extra mode of control the SPPs can exert over

QD emission which can switch the emission state of the dot and is all optical. This

is achieved by polarization dependent launching of SPPs in the neighborhood of the

dots, under excitation by light with energy above the band gap of the encapsulating

GaAs. Such a method may allow ultrafast optical switching of QD emission. We have

also discovered a polarization dependent suppression of QD emission under excitation

by light with energy below the GaAs band gap. This effect is also attributed to the

local launching of SPP waves. Although we have not fully determined its mechanism,

a proposed explanation is put forth.
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1.4 Thesis outline

This chapter hopefully succeeded in motivating the reader for an interest in the

research performed and presented in this thesis. It began with a brief overview of the

current state of information processing and some of the problems it is facing moving

forward into the future. We also discussed some possible alternative directions, with

a special emphasis on nanophotonics and its applications.

The next chapter contains a review of the theoretical background necessary to

understand the research presented in the rest of the paper. It begins with a brief

review of classical electrodynamics, followed by some of the models appropriate to

understand the behavior of electrons in solid materials. We then discuss the solutions

to a plane wave scattering at a planar interface. This problem is then modified and

generalized to the case of a surface guided wave at a planar interface. This wave is

called a surface plasmon polariton (SPP). Then we discuss some of the properties

and requirements for such a wave to occur. After this is a brief overview of the

theory of crystalline materials, then a review of the topics of quantum confinement

and excitons, with an emphasis on the quantum dot (QD) structure. The SPP and

QD are the essential topics of study in this work.

Chapter 3 describes the steps I took to set up the experiments. It begins with

a detailed description of the process of fabricating and implanting the SPP support-

ing structures into the QD substrate and completing the Schottky diode structure.

Then I describe the setup and layout of the confocal micro photoluminescence (PL)

experiment and how the data were collected.

Chapter 4 details the results of the excitation of the InGaAs dots when the energy

of the incident photons is above the band gap of the encapsulating GaAs. We discuss

the difference in the PL signal that is caused by the presence of the silver structures,

especially the polarization difference arising from the launching of SPP waves, which

only occur in one particular polarization. PL data were collected as a function of
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applied bias and incident power, and we discovered a switching mechanism between

different exciton charge states which is all optical. This effect is due to the SPP

induced screening caused by an excess of carriers injected into the GaAs around the

dots.

Chapter 5 discussed the below band excitation, when there is no such injection of

carriers. The results show again a clear polarization dependence on the PL spectrum

when exciting on the plasmonic structures. We attribute this difference again to the

launching of SPPs along the silver structures and discuss a possible mechanism. More

work needs to be done in the future to verify this picture.

Chapter 6 gives a brief wrap up, summarizing the results in this thesis, and laying

a roadmap for future studies along this direction. At the very end is a brief discussion

of the future of nanophotonics.
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Chapter 2

Background theory

This chapter starts with a brief review of the foundations of classical electrodynam-

ics. We will pay special attention to a particular solution to Maxwell’s equations

describing a 2-dimensional longitudinal wave at the interface between two materials

which satisfies certain conditions. This wave is known as a surface plasmon polariton

(SPP).

The second part of this chapter concerns the theory and characterization of semi-

conductor quantum dots. After some background theory for crystal materials, we

will discuss the specific materials and structures studied in this work. The research

presented here will focus on the interaction between these two systems.

For the purposes of this thesis it is appropriate to use the semi-classical approx-

imation, wherein the electromagnetic fields are treated as classical fields interacting

with the quantized system of charge carriers. Quantization of the electromagnetic

field is a complex subject and will not be discussed in this work, as it is beyond the

scope necessary to understand this research. The permeability and permittivity, µ

and ϵ respectively, of materials will always be taken to be dimensionless. Therefore

they will always be relative to the vacuum permeability and permittivity, µ0 and

ϵ0. Furthermore the systems of interest will exhibit negligible effects from magnetic

coupling. Thus the permeability will always be assumed to be unity, µ = 1. Also, all

fields will always be assumed to be well-behaved and amenable to Fourier analysis,

under the prescription ∂
∂t

→ −iω and ∇ → i⃗k. All equations are in S.I. units.
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2.1 Review of classical electrodynamics

Maxwell’s equations (2.1) together with the Lorentz force law (2.2), when supplied

with appropriate boundary conditions, are sufficient to describe the whole of classical

electrodynamics, i.e. all known electromagnetic phenomena to the extent that effects

due to the quantum nature of reality can be ignored.

∇ · E⃗ = ρ

ϵ0
∇ × E⃗ = −∂B⃗

∂t

∇ · B⃗ = 0 ∇ × B⃗ = µ0(ϵ0
∂E⃗

∂t
+ J⃗)

(2.1)

Here E⃗ and B⃗ are the electric field and magnetic induction (sometimes called magnetic

field), ϵ0 and µ0 are the electric permittivity and the magnetic permeability which

reflect the associated electric and magnetic polarizability of the vacuum, respectively.

J and ρ are the current density and charge density respectively.

The E⃗ and B⃗ fields couple to a charged particle’s total charge q and velocity v⃗ to

produce a force on the particle according to (2.2).

F⃗ = q(E⃗ + v⃗ × B⃗) (2.2)

When considering fields inside matter it is important to note that since atoms com-

prise charged particles. Equation (2.2) implies that the applied fields induce a re-

sponse in the material, and this will manifest in ρ and J , altering the sources of

(2.1) once again. In other words, the fields produce a response on charge carriers,

currents or polarizations for example, which then produces new fields again. Thus

we are led to coupled, non-linear partial differential equations which must be solved

self-consistently. This is not trivial to do except for a few special cases.

To simplify analysis of the solutions inside matter it is convenient to introduce

auxiliary fields to isolate from E⃗ and B⃗ two separate parts, fields external to the

system of interest and polarization fields due to the response of the charges in the

material comprising the system of interest. Maxwell’s Equations can then be rewritten
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into a form where the sources can be split into two parts, sometimes called free and

bound, or internal and external. In these equations only the free charges and currents

couple to the new fields, simplifying the analysis as polarization related sources can

be ignored. Although this does not come without a cost. The total solution to the

problem now involves four vector fields instead of two.

∇ · D⃗ = ρf ∇ × E⃗ = −∂B⃗

∂t

∇ · B⃗ = 0 ∇ × H⃗ = ∂D⃗

∂t
+ J⃗f

(2.3)

The same letters, E⃗ and B⃗, are redefined to mean only the externally applied fields,

and the fields D⃗ and H⃗, called displacement field and magnetizing field (H⃗ is also

sometimes called magnetic field) are defined to include both the external fields and

the polarization fields induced by the material. These fields are sometimes called

macroscopic fields, since they involve averaging over regions small enough to allow

derivatives that describe continuous fields, but still large on the atomic scale, so they

can ignore the discrete nature of particles. Equations (2.3) are also called the macro-

scopic Maxwell’s equations. The displacement and magnetizing fields are defined as

follows,

D⃗(r⃗, t) = ϵ0E⃗(r⃗, t) + P⃗ (r⃗, t) H⃗(r⃗, t) = B⃗(r⃗, t)
µ0

+ M⃗(r⃗, t) (2.4)

where P⃗ (r⃗, t) and M⃗(r⃗, t) are the polarization fields due to the response of charges

bound inside the material. The displacement and magnetizing fields take into account

the screening of the vacuum fields due to the response of the charges in the material

and more accurately reflect the average net force on a charge carrier inside the ma-

terial, which is modified by its interactions with the extra fields present. However,

because calculation of the macroscopic fields is difficult, when writing a semi-classical

equation of motion, it is more common to keep the external E⃗ and B⃗ fields in (2.2)

and employ a mass renormalization technique instead, see section 2.3.2.
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While all of the equations presented thus far have a universal domain of appli-

cability, to the extent that quantum effects can be ignored at least, practical exact

calculations are only possible for very simple systems and geometries. Most systems

of interest in modern scientific research involve materials of macroscopic size and

nontrivial geometry, so it is beneficial to use equation (2.3), but at the same time P⃗

and M⃗ are too complex to enable useful calculations without making some approx-

imations. The first such approximations are typically an expansion of the auxiliary

fields in terms of the external fields, the first term of which is the linear displacement

field and magnetizing field for electromagnetic fields inside matter. This is done by

absorbing the polarization response, which may be out of phase with the applied

field, into complex permittivity and permeability functions describing the material.

Understanding the linear optical properties of matter is then reduced to calculation or

measurement of these two functions. The calculation of polarization as a response to

applied electric fields is nontrivial since the response is not instantaneous. In general

it involves a convolution over the past light cone of the polarizability with the exter-

nal fields. However the convolution theorem tells us that in the frequency domain

these relations become simple products and we can write for the linear response of

materials,

D⃗(ω, k⃗) = ϵ0ϵ(ω, k⃗)E⃗(ω, k⃗) H⃗(ω, k⃗) = B⃗(ω, k⃗)
µ0µ(ω, k⃗)

(2.5)

In general the permittivity ϵ and permeability µ are complex valued second rank ten-

sors describing material anisotropy, functions of frequency, temperature, and other

variables, and may have nonlinear terms which couple to higher orders of the applied

fields. These nonlinear terms are typically small and involve the production of new

frequencies given by addition and subtraction of combinations of the other frequency

components present. For example, a commonly exploited second order effect is the

frequency doubling effect known as second harmonic generation (SHG). For most ma-

terials these nonlinear contributions are small, but can be responsible for interesting
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optical effects. These terms can be measured through clever experimental design,

which allows for the isolation of particular nonlinear terms of interest.

Taking the curl of the curl equations in (2.1) in vacuum, a region without charges

or currents classically speaking, and substituting the divergence equations leads to

the wave equations for the fields propagating at a constant speed c = (ϵ0µ0)− 1
2 equal

to the speed of light.

∇2E⃗ = 1
c2
∂2E⃗

∂t2

∇2B⃗ = 1
c2
∂2B⃗

∂t2

(2.6)

This discovery led Maxwell to conclude that light is in fact an electromagnetic wave.

These wave equations however exhibit a constant phase velocity if the permittivity

and permeability of vacuum are taken to be constant. No consideration is made as

to the frame of reference, even those moving with respect ot each other. Originally,

theorists proposed a luminiferous ether, a medium for the propagation of light, which

imbued the permittivity and permeability with an anisotropy based on the motion

of the ether relative to the observer. When experiments failed to demonstrate the

existence of such an ether, the theory of relativity eventually emerged.

The propagation of electromagnetic waves is altered by the optical response of any

media present. Going into the frequency domain with the substitution ∂
∂t

→ −iω,

leads to the Helmholtz form of the wave equations.

∇ × ∇ × E⃗(r⃗, ω) = ϵ(r⃗, ω)ω
2

c2 E⃗(r⃗, ω) (2.7)

In the following, we will make use of the vector identity, ∇×(∇×A⃗) = ∇(∇·A⃗)−∇2A⃗.

Consider an environment without free sources, ∇ · D⃗ = ∇ · (ϵE⃗) = 0. This implies

that ∇ · E⃗ = 1
ϵ
E⃗ · ∇ϵ. To the extent that ∇ϵ

ϵ
is small compared to the wavelength of

the light involved, this term can be ignored and the Helmholtz form reduces to the

more familiar
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(∇2 + k⃗2)E⃗ = 0

where k2 = ϵ
ω2

c2

(2.8)

This leads to the familiar result relating the index of refraction to the phase velocity

of electromagnetic waves,

n =
√
ϵ = ck/ω = c/vp (2.9)

One of the main benefits of using the macroscopic Maxwell’s equations (2.3) is

that they imply a set of constraints on the four fields E⃗, D⃗, B⃗, and H⃗ at the interface

between two materials with different ϵ and µ.

∆E⃗∥ = 0 ∆D⃗⊥ = ρf,s

∆B⃗⊥ = 0 ∆H⃗∥ = Jf,s

(2.10)

The component of E⃗ parallel to the interface and the component of B⃗ along the

direction normal to the interface do not change across the interface between the

materials. Furthermore the normal component of D⃗ and the parallel component of

H⃗ change by the amount of unbound charge density and unbound current density,

respectively, at the surface of the interface. This greatly simplifies the solutions of

these fields.

2.1.1 Lorentz oscillator model

The optical response of real materials can be approximated by means of a heuristic

differential equation, constructed with some convenient and reasonable approxima-

tions. Consider a classical scalar field representing an electron cloud’s charge density

ρ with total charge −e surrounding a nucleus and bound by its potential energy. A

bound electron responds to perturbations in the background electric fields by dis-

placing its charge density ρ from its equilibrium configuration, i.e. it’s form when

there is no external field, by some average amount ⟨r⃗⟩ around the atom’s location,

r⃗0. To first order, the electron is attracted back in the direction of the nucleus by a
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spring-like force proportional to ⟨r⃗⟩ and to the square of the resonant frequency of

the oscillator, ω0. This leads to a differential equation for the atom’s electric dipole

moment, defined as p⃗ = −e ⟨r⃗⟩.

m
d2 ⟨r⃗⟩
dt2

+mγ
d ⟨r⃗⟩
dt

+mω2
0 ⟨r⃗⟩ = −eE⃗(r⃗, t) (2.11)

where γ is a phenomenological damping constant. In general E⃗ will depend on posi-

tion (or wavelength) as well as time (or frequency). However if ⟨r⃗⟩ is much smaller

than the wavelength of the light involved this spatial dependence can be safely ig-

nored. This is called the discrete dipole approximation, as the atoms are considered

to be point dipoles affected by a stationary oscillating electromagnetic field. The

solution can be easily seen by going into the frequency domain using the frequency

convention ∂t → −iω. The polarization field, or dipole moment density, is then

P⃗ (ω) = −ne ⟨r⃗(ω)⟩ = ne2E⃗(r⃗0, ω)/m
ω2

0 − ω2 − iωγ
(2.12)

where n is the density of the oscillating electrons.

The spectral lineshape of the dipole moment is a Lorentzian of a complex variable.

Therefore the polarization response is out of phase with the applied field. Comparing

(2.12) with (2.4) suggests a model for terms in the dielectric function describing

electrons bound to atoms or molecules,

ϵ(ω) = 1 +
∑

k

fk

ω2
k − ω2 − iγkω

(2.13)

where we sum together the contributions from some number of individual electron

resonances. The fk are experimentally determined weights for the resonance at ωk.

This model is completely linear and ignores contributions from higher order effects

such as electron-electron interactions, spin-orbit coupling, etc., but works well as a

first approximation.
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2.1.2 Drude electron gas model

Metals however exhibit effects which cannot be explained by the presence of only

bound electrons, e.g. large electrical conductivities. One of the earliest successful

attempts to explain these properties was the Drude model. In this model the structure

of the metal is imagined to be a set of inert positively charged ions in fixed positions

within a gas of nearly free electrons which collide with the ions with a constant

probability density over time, 1/τ . These collisions scatter the electrons in random

directions isotropically resulting in no average momentum just after impact. Although

there is an average squared momentum, and therefore kinetic energy, dependent on

the temperature of the gas. Between collisions the electrons are assumed to obey

the Lorentz force law (2.2), which only contains the externally applied fields. In

order to account for interactions with the internal material polarization fields in this

approach, the masses must be renormalized to an effective mass, m∗. The electron is

now said to be dressed. The differential equation describing the average dynamics of

the electrons is
dp⃗

dt
+ p⃗

τ
= −eE⃗ (2.14)

The solution can be easily seen by going into the frequency domain using the

frequency convention ∂t → −iω.

p⃗(ω) = −eE⃗(ω)
1/τ − iω

(2.15)

On average the electrons travel for a time τ before colliding, during which time

they will have built up an average momentum of −eE⃗τ in the case of an externally

applied field E⃗. This leads to a similar equation for polarization as in the Lorentz

model without a restoring force term, ω0.

P⃗ (ω) = −ner⃗(ω) = −ne2E⃗(ω)
ω(ω − i/τ)

(2.16)

In other words the valence electrons in metals form a quasi-free plasma. The dipole

approximation will be valid again to the extent that the mean free path of the electrons
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Figure 2.1 The Drude metallic electron plasma is imagined to be a set
of quasi free mobile electrons colliding randomly with fixed inert ions.
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is small compared to the optical wavelength. The dielectric function can be obtained

by combining (2.4) and (2.5).

ϵ = 1 + P⃗

ϵ0E⃗
(2.17)

Combining this with (2.16) yields the contribution to ϵ arising from the Drude plasma.

ϵ(ω) = 1 − ωp
2

ω(ω − i/τ)
(2.18)

where ωp is called the plasma frequency and is given by ωp = ne2/m∗ϵ0, which for

many metals is much larger than τ−1. To the extent that this damping can be ignored,

(2.18) simplifies to

ϵ(ω) = 1 − ωp
2

ω2 (2.19)

Thus, although the electrons are not bound to individual atoms, the Drude plasma

still carries a natural dipole resonance, producing a wave of oscillating charge den-

sity at the plasma frequency due the plasma’s self interaction, i.e. electron-electron

interactions and interactions with the background lattice of ions. This resonance cor-

responds to zeroes of the dielectric function. It can be seen from (2.7) by making the

substitution ∇ → i⃗k, that |⃗k|2E⃗ + k⃗(k⃗ · E⃗) = 0. The plasma resonance is therefore

a longitudinal wave, as expected for an oscillation of charge density since electric

field lines point from positive to negative charges. This type of plasma oscillation is

called bulk plasmon since its effect is to induce a polarization across a 3-dimensional

material. This is in contrast to a surface plasmon which only occurs at the interface

of a metal. This is a special type of wave and will be discussed in section 2.2.2.

The characteristic reflectivity of metals is due to their negative permittivity at

frequencies lower than ωp. In this regime the fields are driven out of the metals as

charges on the surface oscillate in response to the external field, attenuating any

response inside the metal and ultimately emitting their own fields back outward.

This is the cause of specular reflection. The plasma frequency itself is typically in the

ultraviolet spectrum, so lower frequency visible light tends to be reflected, although
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individual resonances can color the reflected light. Above ωp the dielectric function

becomes positive and metals behave like dielectrics. At very large frequencies it

approaches unity, as the electrons do not respond to the applied fields fast enough

to screen them out. This is sometimes called the ultraviolet transparency of metals,

although band transitions still play an important role in the absorption of photons.

We will discuss band theory in section 2.3.1.

2.2 Theory of surface plasmon polaritons

In this section I will derive and discuss a particular solution to Maxwell’s equations

known as the surface plasmon polariton, a name reflecting the strong coupling between

light and the polarization response induced in the electron plasma at a metal’s surface.

We arrive at this solution by generalizing the problem of scattering of light off of the

planar interface between two different materials. This is followed by a discussion of

the possibility of wave guiding at the interface, leading ultimately to the derivation of

the SPP. The section is concluded with a discussion of some of the properties of such

a wave, its dispersion relation compared to bulk plasmons, and how these modes can

be coupled to asymptotic free space modes.

2.2.1 Scattering of light at a plane interface

Consider a monochromatic plane wave travelling in the x-y plane toward the interface

between two materials separated by the plane y = 0 as depicted in figure 2.2. The

materials are described by two dielectric functions ϵ1 and ϵ2 with wavenumbers k1

and k2 in the two materials, according to the relation k = ω
√

ϵ
c

. The incident wave is

moving towards the interface from the upper half-plane. A convenient basis for the

vector space of possible polarizations of the incident wave includes two basis vectors,

s-polarized transverse electric fields (TE) fields and p-polarized transverse magnetic

fields (TM). This can be described with just the transverse field component, from

24



www.manaraa.com

reflected

transmitted

ε2

ε1

x

y

incident

Figure 2.2 A plane wave scatters at the interface between two different
dielectric media described by two different dielectric constants, ϵ1 and ϵ2.
Incident light strikes the surface between the media, part of which is reflected
back upward, and part of which is transmitted into the material. The wave
vectors of the different components are shown by the red rays.
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which the other components of the fields can be derived if the angle of incidence is

known.

F⃗i(x, y) = Fiẑe
ik⃗·r⃗ = Fiẑe

ik(αx−βy) (2.20)

where Fi is the amplitude of whichever incident field is transverse to the plane for

the particular polarization under consideration, Ez for TE waves and Bz for TM. If

n1 is real, then α and β are simply the cosines from the projections of k⃗ onto the

coordinate axes, x and y. The signs have been chosen so that they will be positive.

This implies that α2 + β2 = 1, which also follows from the Helmholtz equation 2.8.

For a perfectly flat interface, the reflected field will obey the law of specular reflection.

F⃗r(x, y) = Frẑe
ik(αx+βy) = rFiẑe

ik(αx+βy) (2.21)

Note the change in sign in front of β. For the transmitted field, the y-component of

the field changes with the change in the refractive index n =
√
ϵ of the materials,

while the x-component stays constant. This behavior is encoded in Snell’s law. Any

change in the wavevector as the wave passes into a material with a different index of

refraction only occurs in the direction normal to the interface (in this case, y), while

the parallel component (x) stays constant. It follows as a result of (2.10).

F⃗t(x, y) = Ftẑe
ik(αx−γy) = tFiẑe

ik(αx−γy)

γ =
√(

n2

n1

)2
− α2

(2.22)

Note that there is an ambiguity in the definition of γ. To avoid nonphysical behav-

ior, the signs of the real and imaginary parts must be chosen to satisfy the Sommerfeld

radiation condition so that waves either propagate or attenuate in any direction away

from the interface. The interface boundary conditions (2.10) lead to a set of equa-

tions relating the reflected and transmitted amplitudes for each polarization. They
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are given by the following:

TE TM

1 + r = t 1 + r = t

β(1 − r) = γt
β

ϵ1
(1 − r) = γ

ϵ2
t

(2.23)

Here r and t are defined by, Fr = rFi and Ft = tFi. It may appear that equations 2.23

violate energy conservation, as the transmitted field seems larger than the sum of the

incident and reflected field. Clearly this cannot be true. It must be remembered that

these are actually complex amplitudes, containing any phase shifts in the scattered

wave components, and the reflected wave comes with a π phase shift, i.e. a factor of

-1, and energy is conserved, as it must be. With some algebra, these equations can

be inverted to solve for the complex scattered amplitudes in terms of the propagation

constants.
TE TM

r = β − γ

β + γ
r = β/ϵ1 − γ/ϵ2

β/ϵ1 + γ/ϵ2

t = 2β
β + γ

t = 2β/ϵ1

β/ϵ1 + γ/ϵ2

(2.24)

This completes the problem of scattering from a planar interface. The results are

general and may be applied to a variety of materials with complex dielectric functions

or indices of refraction, provided that γ is chosen with the appropriate signs to obey

the Sommerfeld radiation conditions.

2.2.2 interface guided electromagnetic wave - the SPP

The surface plasmon is a wave comprising strongly coupled electromagnetic and

charge oscillations at the interface between two different materials. It is both a

longitudinal EM wave and a wave of oscillation in the 2-D plasma at the surface of

a metal. To understand the characteristics of such a wave let’s reconsider the prob-

lem from the last section, scattering of a wave at the interface between two different

non-magnetic materials.
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Assume that there is already some energy existing in such a surface guided mode.

Then we can use the results of the last section with a slight modification. Equation

2.23 derives from the boundary conditions, equations 2.10, and can still be used

to describe the shape of a surface wave, if the 1 is replaced by 0. Since the 1 is

describing the incident field intensity, and in this case we are assuming the wave

is just travelling along the interface with no energy feeding into it, then the new

amplitude of the incident wave is 0. The other terms, r and t, will still describe

the form of the wave on each side of the interface satisfying the interface boundary

conditions and Maxwell’s equations. Equations (2.23) simplifies to

TE TM

r = t r = t

−βr = γt −r β
ϵ1

= t
γ

ϵ2

↓ ↓

β = −γ − β

ϵ1
= γ

ϵ2

(2.25)

The conditions are the poles of equation (2.24). There are multiple choices to

handle complex phases needed to describe attenuating waves. Taking the convention

that k⃗ and ω are real and β, γ are complex, the signs must be chosen to satisfy the

radiation conditions, i.e. the component of the wave travelling away from the interface

must propagate away from the interface if the propagation constants have real parts,

Re(γ) ≥ 0 and Re(β) ≥ 0 and must attenuate as y → ±∞, i.e. Im(γ) < 0, Im(β) <

0. Clearly β and γ cannot be real, or we would be describing waves propagating out

to infinity with no source. The solutions must attenuate to have a finite energy, and

to dissipate the energy which we assumed was already fed into the surface mode, so

β and γ must be complex.

First, consider the case of TE polarization. Already all of these conditions just

discussed are inconsistent with the TE requirements in (2.25), leading to β = γ = 0
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and there is no surface wave. Moreover, even though they are no longer simply the

projection cosines as they were in the case of a real ϵ, still α and β must satisfy the

same condition, α2 + β2 = 1, above the interface. This follows from the Helmholtz

equation (2.8). Using this fact with equation (2.25) and the definition of γ given in

(2.22), we are led to (n2
n1

)2 = 1 which implies one of two possibilities, either n1 = n2

and there is no interface at all, or n1 = −n2 which is unphysical, at least for non-

magnetic materials. We must conclude that an interface guided propagating wave

cannot occur in the TE mode at a planar interface with non-magnetic materials.

The existence of metamaterials with large negative permeabilities does indeed

allow a TE polariton solution [68, 69]. Also it has been shown it is possible to launch

such a TE surface wave in heterostructures with multiple thin layers of dielectrics

[70]. However, for the simpler case of a single metal-dielectric interface such as that

studied in this research, no TE solutions are available.

For the TM configuration this is not the case, and there are no such contradic-

tions eliminating the possibility of the existence of the surface guided wave in this

polarization. Combining the definition of the index of refraction n =
√
ϵ, the rela-

tions between α, β, and γ, and the TM constraints on a surface guided wave given

in equation (2.25), we can solve for the components of the wavevector of the wave in

terms of the dielectric functions of the materials involved. The propagation constant

is defined as kx = αk = α
√
ϵ1k0 where k0 is the wavenumber of the wave in free space.

The result after some algebra is:

kx = ±k0

√
ϵ1ϵ2

ϵ1 + ϵ2
(2.26)

The surface wave propagation constant and wavelength are modified relative to its free

space value. Recall that the component of the electric field’s wavevector parallel to the

interface is constant across the interface, so the notion of a wave with a well-defined

wavenumber along the interface is consistent. The sign of the propagation constant

determines the propagation direction of the wave. Since real materials respond to
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electromagnetic waves by moving charges around, a process which is inherently lossy

due to charge carrier collisions, the wave amplitude must attenuate as it travels in

order to satisfy this energy dissipation requirement, sgn(Im(α)) = sgn(Re(α)).

The relations between α, β, and γ also give us information about the wave profile

in the y direction.

ky,j = ±k0
ϵj√
ϵ1 + ϵ2

(2.27)

Here j is 1 or 2, describing the transverse field profile in material 1 or material 2. In

other words, ky,1 = βk and ky,2 = −γk. As usual, the sign in equation 2.27 must

again be chosen so that the fields attenuate or propagate away from the interface.

In order to describe an evanescent wave then ky must have an imaginary part in

both media. If we temporarily ignore material losses, then ϵ1 and ϵ2 are real. In

this case, β, γ will be purely imaginary. There are two requirements for this to be

true. First the denominator under the sqrt in 2.27 must be negative, implying that

sgn(ϵ1) = −sgn(ϵ2). This is a general result of this type of surface guided wave.

It may only occur in the TM mode and at an interface where the real part of the

dielectric function changes sign, e.g. an interface between a metal and a dielectric.

Secondly, observing equation 2.26, we see that both the numerator and denominator

under the square root are negative. Therefore α is real, as expected. In order for

a wave to propagate, α must at least have a real component, but in the lossless

approximation it is entirely real.

Now that the transverse field is known, the electric and magnetic field components

can easily be calculated from this using Maxwell’s equations. This leads to the familiar

result for TM waveguide modes. The only field components which are nonzero are

Bz, Ex, and Ey. The electric field thus has a longitudinal component in the same

direction as its propagation. It is a longitudinal wave, just like the bulk plasmon

resonance we discussed in section 2.1.2. This is because this type of wave is in fact

a strong coupling between the electric fields and the charges in the plasma at the
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metal’s surface.

We therefore conclude the following. The interface guided wave at a simple planar

interface between two materials with different dielectric functions may occur only in

the TM configuration and only at an interface where the real part of the dielectric

function changes sign. This interface typically is between an insulator and a metal.

We know that the dielectric function of an insulator is real, positive, and greater than

unity, tending to slow down the phase velocity of light moving through it, while we see

in equation 2.19 that the dielectric function of metals in the lossless approximation

is real and negative and much lower than -1 at low frequencies. To this end, ϵ1 will

be henceforth called ϵd (for dielectric), and ϵ2 will be called ϵm (for metal).

2.2.3 Dispersion relation of surface plasmon polaritons

In this last subsection concerning the phenomenon of SPPs, I will discuss some of

their properties, the dispersion relation they follow, and the matter of coupling in and

out of the SPP mode. Consider the Drude plasma dielectric function from section

2.1.2. Equation (2.19) with (2.9) leads immediately to a dispersion relation for bulk

plasmons.

ω2 = ω2
p + c2k2 (2.28)

In a similar fashion, equation (2.26) leads to a dispersion relation for the surface

plasmon. Substituting equation (2.19) for ϵm leads to

kx = ω

c

√√√√ (ω2 − ω2
p)ϵd

(1 + ϵd)ω2 − ω2
p

(2.29)

The dispersion becomes asymptotic at the surface plasmon frequency, determined by

the pole of the right hand side, ωsp = ωp/
√

1 + ϵd. This is also where ϵd = −ϵm, and

the propagation constant diverges. This frequency will in general be smaller than

the bulk plasmon frequency ωp. Between the two frequencies lies a forbidden region

where no propagation occurs. See figure 2.3. In both the small ω limit of the SPP
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kx→

ωsp

ωp

ω
→

Forbidden Region

Bulk plasmon
SPP
Light Line

Plasmon Dispersion Curves (Lossless metal)

Figure 2.3 The dispersion curve for bulk plasmons and SPPs in the approximation
of a lossless metal. There is a forbidden region due to the assumed lossless nature of
the materials involved. In both the ω → 0 limit and the ω → ∞ limit the solution
approaches the light line.
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band and the large ω limit of the bulk plasmon band the solutions approach the light

line.

Another interesting aspect of this type of wave is its propagation speed. The

phase velocity, given by vp = ω/k, decreases compared to its free space value as k

approaches the surface plasmon frequency. Also, the group velocity given by the slope

of the curve, dω
dk

, can be very small, so the wave propagates very slowly. Indeed in

the lossless metal approximation both velocities will drop to zero as the wavelength

collapses at the surface plasmon frequency.

In reality, the forbidden region occurs as a fiction resulting from the assumed

lossless nature of the metal. In real materials there is instead a region of anomalous

dispersion where two dispersion bands bend back towards each other and meet in the

middle to form a single gapless band. However, at the surface plasmon frequency the

propagation constant can still be quite large compared to the free space value. See

figure 2.4. In the previously forbidden region, plasmonic modes are now available.

Now that α is no longer strictly real, β and γ are not purely imaginary. The transverse

wave profile is then no longer a simple exponential, but oscillations can extend away

from the interface. This effect becomes appreciable when the negative dielectric

function of the metal is no longer larger in absolute value than the positive dielectric

of the insulator, and the propagation constant gains a large imaginary part. In this

region the solution is only partially bound at the interface. Solutions between ωsp

and ωp are sometimes called quasi-bound plasmons.

We have seen that the solution to the transverse component of the electric field at

the metal-dielectric interface for the surface plasmon mode consists of (approximately)

two exponential curves which decay in opposite directions and meet at a point on

the interface. In contrast to typical dielectric waveguides whose modes are spread

across the interior of its cavity, the surface plasmon propagates along an interface

and its mode is very tightly confined there. This implies the light and therefore the
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kx

Figure 2.4 Dispersion curves and light lines for a silver/air
interface and a silver/silica interface. Source: [71].
Quasi-boung plasmon modes now exist in the previously
forbidden region. Note that the surface plasmon frequency is
in the UV range, so plasmons launched at optical frequencies
will be in the SPP band and therefore bound at the interface.
Deviations from the light line in the bulk plasmon band at
high energies are likely due to the effect of band transitions.
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energy density of the electromagnetic field are highly concentrated. Furthermore we

see that the wave propagation constant, i.e. the inverse wavelength, can be quite

large as ω → ωsp. This implies a further concentration of light in the longitudinal

propagation direction, so the light is tightly confined along two axes and the energy

density is further enhanced. This crucial aspect of the SPP phenomenon allows the

possibility of long range subwavelength optical propagation and plays a critical role

in nanophotonics, bypassing the diffraction limited footprint of traditional photonic

devices. Tightly confined light also leads to not only a large electric field enhancement

in the neighborhood of the interface, but also large electric field gradients, leading

to the potential for further interesting possibilities. For example, large electric fields

can enhance nonlinear optical effects, which depend on higher orders of the electric

field.

Since the SPP band does not cross the light line, light from free space will not enter

or exit the SPP mode. To do so would violate conservation of energy and momentum.

The SPP mode is therefore non-radiative at a perfectly flat planar interface. Efficient

coupling of light into and out of the SPP mode will require some consideration for

practical device design. In particular, efficient conversion will require altering the

dispersion relation through the implementation of some kind of angular dispersion at

or very near to the interface. The main methods for achieving this are traditionally

through the use of a diffraction grating or some refractive material such as a prism.

The phase matching condition for strong coupling is then most efficient at particular

angles, where the added lateral momentum is just enough to reach the SPP band.

Another approach, and the one used in the experiments presented in this thesis, is

to exploit the resultant surface geometry itself, which will not be a perfectly flat

surface, either the inherent surface roughness or in this case a sharp corner of a

thin film, to provide the additional lateral momentum necessary to couple the free

space and surface plasmon modes. A randomly rough surface can be considered as
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a superposition of many gratings with many different spatial frequencies. This can

be seen through Fourier analysis. This simplifies device fabrication at the cost of

conversion efficiency. For a simple study of plasmonic influence on quantum emitters

this will be sufficient. In the case of real device implementation, SPP conversion

efficiency will likely have to be optimized, and the fabrication will be more complex.

This section concludes our discussion of the surface plasmon. In the previous

subsections we have discovered the longitudinal surface plasmon wave, known as SPP,

and discussed its properties how it can be excited. The wave propagates along the

surface between a metal and dielectric, or between any two materials where the real

part of the dielectric function changes sign, and is evanescent in its transverse profile.

We have seen that it can only be excited by TM radiation and that additional angular

dispersion is needed to get the light cone and SPP band to cross. The research in

this thesis concerns the study of the interaction between these waves and excitons

confined in quantum dots. The rest of this chapter is dedicated to discussing the

theory of crystalline materials and quantum dots.

2.3 Review of crystalline materials

This section provides a brief overview of the theory of crystalline materials. I begin

with a discussion of the Bravais lattice and the states which form in a periodic poten-

tial. Then I talk about semiconductor materials, their charge carrier dynamics, and

the formation of excitons. This discussion will be relevant to the following section

which gives details about the type of quantum dots studied in this research..

2.3.1 Wavefunctions in a periodic potential

A very common arrangement of matter in the solid state is the lattice structure, in

which atoms form a periodic structure with predictable positions relative to each

other. The principle object of study is the Bravais lattice, an idealized, defect-free,
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infinite lattice described by a set of basis vectors a⃗1, a⃗2, a⃗3 and the set of atoms

occupying each lattice site position. The lattice sites are the set of vectors {n1a⃗1 +

n2a⃗2 + n3a⃗3 : for all integers n1, n2, n3}. Each site may include a so-called basis of

atoms, a group of atoms with fixed positional offsets from the lattice site. This basis

forms the unit from which the lattice can be built by cloning the basis at every lattice

site. The III-V semiconductors studied in this work consist of a lattice with a 2-atom

basis in the zincblende structure.

While single crystalline materials are rare and difficult to fabricate, many mate-

rials are formed from large scale aggregations of small pieces of single crystals. Such

polycrystalline materials suffer from carrier collisions at the boundaries between the

single crystals. However the Bravais lattice idealization still gives a useful insight into

how the periodic potential affects the distribution of electronic wavefunctions within

real materials. In fact no crystalline material is perfect at real (i.e. nonzero) temper-

atures, as each lattice site’s occupancy probability may be described by an Arrhenius

term, giving a nonzero probability of lattice defects due to thermal fluctuations, even

in a nominally perfect single crystal.

The Fourier transform of the Bravais lattice is another lattice of wavevectors

called the reciprocal lattice. For any two vectors, R⃗ in a Bravais lattice and K⃗ in its

reciprocal lattice the following holds.

eiK⃗·R⃗ = 1 (2.30)

In a simple model, ignoring electron-electron scattering, and using the idealiza-

tions of the Bravais lattice, the electronic behavior can be qualitatively modeled by

means of a Schrodinger equation with a potential energy having the periodicity of the

Bravais lattice. Effects due to defects can be added in perturbatively later. The base

Hamiltonian is then symmetric under the action of a translation operator, defined by

TR⃗ : ψ(r⃗) → ψ(r⃗+ R⃗) for any lattice vector R⃗. The Hamiltonian therefore commutes

with these translation operators and there must be a shared basis of eigenstates for
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both operators. These states are called Bloch waves, and it can be shown they can

be described by a product of a plane wave and a function representing the underlying

atomic contribution to the local potential.

ψnk⃗(r⃗) = 1√
V
eik⃗·r⃗unk⃗(r⃗) (2.31)

Such a state has has two quantum numbers. n is an integer called the band index and

k⃗ is a quasi-continuous domain containing all vectors in a primitive unit cell of the

reciprocal lattice, a region of reciprocal space containing all the possible values of k⃗.

The allowable values of k⃗ do not span all of reciprocal space, as there is a degeneracy

between them due to the periodic lattice structure which is lifted by the band index.

Typically the first Brillouin zone is used as a convenient primitive unit cell. The first

Brillouin zone contains all points in reciprocal space which are closer to the site at

k⃗ = 0⃗, than to any other site in the reciprocal lattice.

It can be shown that the periodic potential implies that unk⃗ must have the same

periodicity as the Bravais lattice.

unk⃗(r⃗ + R⃗) = unk⃗(r⃗) (2.32)

for any R⃗ in the Bravais lattice. As the reciprocal lattice has multiple periodicities

itself, any vector k⃗ in a primitive cell of the reciprocal lattice is equivalent to any

other vector k⃗+ K⃗ for any K⃗ in the reciprocal lattice. This follows from (2.30) and is

the reason for the reciprocal space degeneracy already discussed. Each vector in the

first Brillouin zone therefore corresponds to an infinite number of states, delineated

by the band index.

Energy bands occur as a result of exchange splitting due to wavefunction overlap

among the electrons spread across the lattice. That is, as separate electron states

are brought close together, significant overlap of their wavefunctions occurs, and it

results in orbital hybridization, where new states form which extend over the entire

spatial range of the previously separate states. This splitting occurs on a massive

38



www.manaraa.com

scale as even microscopic samples contain huge numbers of atoms, N. The energy

separation between the formerly degenerate states scales like 1/N , leading to an

essentially continuous k⃗ domain. Band gaps occur at regions between the bounds of

two adjacent bands. Electrons do not occupy states in the band gaps, as they are

energetically forbidden.

It is clear from (2.31) that the lattice orbitals are delocalized and spread across

all of space due to the orbital hybridization, with the only spatial dependence in

the probability density arising from the atomic contributions, unk⃗(r⃗). This is an

approximate description of electrons in the higher energy bands, such as the valence

and conduction bands, although in real materials defects and boundary conditions

will restrict the extent of the real wavefunction to some degree. In these higher bands

the electrons are the most weakly bound, leading to large wavefunction overlaps and

strong exchange splitting. In other words the bands are the widest at higher energies.

For more strongly bound electrons, such as those in lower atomic energy states or

electrons producing permanent dipole moments, a more appropriate set of basis states

are the Wannier states which are maximally localized around a lattice site.

ϕnR⃗(r⃗) = N

Ω

∫
BZ

d3k⃗e−ik⃗·r⃗ψnk⃗(r⃗) (2.33)

Here the domain of integration is the first Brillouin zone, and Ω is its volume.

Electrons fill the energy bands starting from the lowest energy state with occu-

pancy probabilities given by the Fermi-Dirac distribution. Thus all lower energy core

electrons are filled almost certainly, but at higher energies near the Fermi level there

can be some electrons existing in higher energy states even though lower energy levels

are available to them. This is the result of thermal fluctuations, and depends on the

type of material. The highest energy band which is not filled at zero temperature is

called the conduction band. The band below this is called the valence band. Ma-

terials which have a partially full conduction band, even at zero temperature, are

called metals. In these materials, electrons occupy states at the Fermi level. A full
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band cannot conduct an electric current under the influence of a weak external field

since the Pauli exclusion principle prevents tunneling to adjacent states in the same

band. Electrostatic breakdown can of course occur if the electric fields get very large.

The partially empty conduction band is what gives metals their characteristic large

electrical conductivities, even in response to weak fields.

Semiconductors and insulators have empty conduction bands in their electronic

ground state at zero temperature. Here the Fermi level lies in the bandgap between

the valence and conduction bands. At nonzero temperature, thermal fluctuations

elevate electrons from the valence to the conduction band, leaving behind a hole in

the valence band. The hole in the occupancy of the valence band states creates a

positively charged quasiparticle also called a hole. Both conduction band electrons

and valence band holes contribute to electrical conductivity. While the distinction

between semiconductor and insulator can be somewhat arbitrary, a semiconductor

generally has a small enough bandgap for a significant number of electrons to be

thermally injected into the conduction band at typical operating temperatures.

A common technique in semiconductor manufacturing is the intentional introduc-

tion of dopant atoms into a crystal. This introduces new weak bonding sites with very

low ionization energies. An n type donor dopant introduces a new atom with a very

weakly bound electron near the Fermi level. This electron tends to detach from the

atom and move freely throughout the material. Similarly, a p type acceptor dopant

tends to capture an extra electron leaving an extra free hole behind. The increase in

free carriers results is an increase in electrical conductivity. An n-doped (p-doped)

semiconductor injects extra electrons (holes) and shifts the Fermi level towards the

conduction (valence) band. Heterostructures can be formed by combining different

types of crystals into a single device. The electrons reach thermal equilibrium and

the bands bend to fix the Fermi level at a single energy across the device. The band

bending effect leads to an excess of charges on one side of the interface, causing a
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persistent internal electric field in the region near the interface and a so-called de-

pletion zone where free charge carriers are driven away. The common p-n junction

diode, for example, uses a junction of p-type and n-type semiconductor to produce

an asymmetric conductivity which prefers to conduct current in only one direction

due to its intrinsic electric field.

The interface between a metal and a semiconductor can produce another type of

interface called a Schottky contact. A Schottky contact pins the Fermi level across

the interface, bending the band structure of the semiconductor near the surface and

adding an additional potential barrier and therefore intrinsic field that carriers must

overcome to conduct a current through it. This is due to metal-induced gap states

just inside the surface of the semiconductor, and it also causes a depletion zone and

asymmetric conductivity. This is known as a Schottky diode.

2.3.2 Excitons

The energy of an electron near a band extremum can be expanded in a Taylor series.

E(k⃗) = Ec,v + ℏ2

2
∑
i,j

M−1
ij kikj + O(k⃗3) (2.34)

In this example the expansion is around k⃗ = 0⃗ but the generalization is straight-

forward. The first order term is not written because it’s coefficient is 0, since the

expansion is around an extremum. The quantity M−1
ij = 1

ℏ2
∂2E

∂ki∂kj
is the inverse ef-

fective mass tensor which averages over the influence of the complex internal fields

on the inertial response of the charge carriers. For the simple case of of an isotropic,

symmetric extremum the effective mass can be described by a simple scalar m∗, which

is positive (negative) for upward (downward) bending bands like the conduction (va-

lence) band. The correspondence between band curvature and inverse mass follows

from the classical mass-energy relation of a free particle, E = p⃗2

2m
, and the relation be-

tween wavenumber and momentum, p⃗ = ℏk⃗. Thus, near the extremum of an unfilled

41



www.manaraa.com

band, crystal charge carriers act as nearly free particles with altered masses given by

the inverse of the band curvature at that point.

In a semiconductor crystal there are just enough electrons to completely fill the

valence band in the ground state. Excited states which increase conductivity are

achieved through carrier injection by exciting electrons into higher bands, especially

from the valence band to the conduction band. This can be achieved through a

number of mechanisms, e.g. thermal fluctuations or photoexcitations. As particles

tend to settle in states with the lowest available energy, electrons tend to settle at the

bottom of the conduction band, and holes at the top of the valence band. The hole

attracts other nearby electrons into its electric field via Coulomb interaction. When

an electron and hole become trapped in each other’s potential, they form another

quasiparticle bound state called exciton.

Nanocrystals can also trap single charge carriers in their ground state. When an

exciton is excited in this configuration it will have a net charge. See figure 2.3.2.

Excitons with one net unit of fundamental charge are called trion. Higher charge

species can also occur. It is also possible for carriers bound to a lattice site to attract

other carriers. An exciton of this type is called Frenkel exciton. This research will

focus on Wannier-Mott type excitons where both charges are delocalized.

Unlike silicon, III-V semiconductors like GaAs and InGaAs are direct bandgap

materials, i.e. the valence band maximum and conduction band minimum occur at

the same point in k⃗-space, in this case the origin k⃗ = 0⃗. As photons have negligible

momentum, this allows a large quantum efficiency or conversion of photons to ex-

citons. The coupling of vacuum electromagnetic modes to this interband transition

produces large numbers of excitons under excitation by photons with sufficient en-

ergy. These materials therefore offer exceptional performance for optoelectronics and

photonics applications.

The inverse consequence of this coupling is their large photoluminescence, the
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Exciton (X0)

Trion (X+1)Trion (X-1)

Figure 2.5 The bound state of electron and hole. The electron and hole
extend over many lattice sites forming the Wannier-Mott type exciton,
separated by the exciton Bohr radius, aB. Besides the neutral exciton, other
charge states are possible, including ±e trions and even higher multiples of
the fundamental charge.
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ability to re-emit light from energy stored as excitons. An electron bound in an exciton

will eventually fall back into the valence band hole, a process called recombination,

destroying the exciton and carrier occupancies and releasing the binding energy of the

exciton as light, a process similar to photoproduction from positronium (electron and

positron) annihilation. However, unlike positronium, excitons can emit single photons

and use their atomic environment to balance any residual momentum. Positronium

tends to emit photons in pairs when it decays in order to balance momentum.

2.4 Theory and characterization of InGaAs quantum dots

In this section I will discuss the properties of the types of structures used in this

research. This builds upon the information discussed in the last section. After this

section the reader should have enough background information to understand the

types of quantum dots used in this research.

2.4.1 Quantum confinement

Quantum confinement occurs when a particle is contained in a region whose size

is smaller than the length scale of the particle’s wavefunction. For confinement of

excitons the scale is the exciton Bohr radius.

aB = 4πϵdϵ0ℏ2

µe2 (2.35)

The exciton Bohr radius is increased from the usual atomic Bohr radius by two factors.

First is the factor ϵd, the dielectric response of the material which screens the electric

fields and weakens the Coulomb interaction between the electron and hole. Second,

the mass in the excitonic Bohr radius is different from the bare electron mass.

For QDs the excitons tend to be of the Wannier-Mott type, i.e. neither the electron

nor hole are localized around a lattice site, and each must be described by their

effective mass, m∗. The equation for the atomic Bohr radius contains the bare electron
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mass, or more precisely the reduced mass in the problem of an electron orbiting a

nucleus which, due to the huge disparity in the masses, gives essentially the same

quantity as the bare electron mass. For excitons, this must be replaced with a much

smaller reduced mass describing a delocalized electron and hole, µ = m∗
em∗

h

m∗
e+m∗

h
. As a

consequence of these factors and also the extended nature of the carrier wavefunctions

themselves, the excitonic wavefunction is extended over a large number of lattice sites.

Single material nanocrystal QDs have long suffered from the problem of blinking,

intermittent disruptions in the fluorescence, thought to be a result of carriers tunnel-

ing into interface states at the surface of the crystal, although alternative mechanisms

have been proposed involving other non-radiative relaxation mechanisms [72]. One

technique to achieve better confinement and prevent such leakage is to place a piece

of semiconductor, of a scale below the critical size, inside a bulk piece of another

semiconductor having a larger bandgap [73]. The QDs studied in this work are of

this type.

Quantum confinement imposes restrictions on the available wavevector compo-

nents for free carriers. For example, a quantum well confines the carrier wavefunc-

tions in the direction of one spatial axis. A particle confined to the xy-plane must

have kz = 0. Every time the dimensionality of the system is reduced it causes abrupt

changes to the available density of states for free carriers. See figure 2.6.

The quantum dot (QD) is a structure which confines its excitons in every spatial

direction, making it an essentially point-like particle. The carriers are completely

confined by the altered boundary conditions and cannot move. They are restricted

to states where k⃗ = 0⃗. As a result the density of states becomes discretized and

only a few energy levels in the valence and conduction bands are available. Quantum

dots exhibit discrete emision spectra, similar to atomic transition spectra. They are

commonly called artificial atoms for this reason.

One of the advantages of using quantum dots over atoms as light emitters is the
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Figure 2.6 A qualitative picture of the available density of
carrier states of a semiconductor system. As the
dimensionality of the system is reduced the DoS changes
abruptly. For 0-dimensional QDs the states are effectively
discrete.
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ability to exploit the distributed nature of the exciton wavefunction. A QD may

contain between 103 and 106 atoms, a scale more easily addressable through modern

nano-fabrication techniques than the manipulation of individual atoms. Furthermore,

the fact that the boundary conditions can be finely tuned allows the energy of the

states and therefore the wavelength of any luminescent emission to be tuned by

changing the dimensions of the structure. By reducing the size of the nanocrystal, the

electron and hole wavefunctions are forced closer together, increasing their binding

energy, and vice versa. This is called the quantum size effect, and this tunability

makes the QD very versatile as a single photon source.

2.4.2 Self assembled InGaAs quantum dots

The QDs studied in this research were grown at the Naval Research Laboratory by

molecular beam epitaxy (MBE). The method for formation of the QDs is epitaxial

growth of InGaAs atop a layer of GaAs, followed by a final capping layer of GaAs to

fully encapsulate the dots. InAs grows on GaAs in the Stranski-Krastanov (SK) MBE

mode forming a thin quantum well layer, called wetting layer, and small islands of

self-assembled nucleated extrusions. SK growth occurs as a result of a lattice constant

mismatch between the two materials. In general a Bravais lattice has three lattice

parameters. However the zinceblende lattice structure of these III-V semiconductors

is a face-centered cubic lattice with a 2-atom basis in which all three lattice parameters

are equivalent, so the crystal can be described by a single lattice constant. The lattice

constant of GaAs is 5.6533Å, and that of InAs is 6.0584Å, while InxGa1−xAs obeys

Vegard’s law, i.e. it’s lattice constant varies between the two extremes linearly with

the parameter x [74]. As a result of this mismatch there is an excess of strain in

the epitaxially grown film. The film will grow monatomic films only to a certain

critical thickness. Past this it is energetically favorable for the atoms to aggregate into

nucleations rather than simply increase the film thickness with additional monolayers.
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Figure 2.7 Top The Stranski-Krastanov mode of epitaxial
growth creates a wetting layer film with nucleated islands. The
upper atoms prefer to settle on top of the islands rather than in
the film due to the strain of aligning with the lattice of the
underlying substrate. Bottom The formation of self-assembled
QDs by SK epitaxial growth of InGaAs atop GaAs. The dots are
further encapsulated with an epitaxial capping layer of GaAs.
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These nucleations form the core of the QD structure. Once the islands have been

formed the sample is encapsulated with an additional layer of GaAs.

The particular sample used in these experiments was grown atop a 0.5mm N+

doped GaAs wafer. The high level of doping provides a large conductivity and a

quality Ohmic contact at the bottom of the sample. Atop this was grown a 40nm

buffer layer of insulating GaAs, followed by InGaAs QDs with a nominal of thickness

of 2.5nm, followed by a 280nm capping layer of insulating GaAs. The n-type GaAs

pins the Fermi level near the conduction band. See figure 2.8. Its junction with the

i-GaAs creates a depletion region across the upper layers of the sample.

Changes in the charge states of excitons forming in the QDs can be induced by

exerting an external electrical bias across the sample. Forward biasing pushes the

bands of the insulating parts of the sample downward on the energy axis, lowering

the energy of the states. This increases the likelihood of the QD and therefore its

excitons to be negatively charged. Reverse biasing lifts them upward, and reduces

the likelihood that they are negatively charged.. The doped substrate, being more

conductive, responds to external fields by reconfiguring its charge carriers until the

field is completely screened out, canceling out the internal field, rather than bending

the bands. Its energy bands therefore shows little effect under the influence of such

a bias.

This mechanism gives an extra electrical mode of control over the PL dynamics

of these types of QDs. For example, as the strength of a reverse bias increases, it

lowers the lateral scale of the potential barrier which is confining any carriers inside

the dots. This decreases the tunneling time for electrons to tunnel out of the dot into

the GaAs conduction band, and holes out into the valence band. At a large enough

bias the tunneling time is reduced below the exciton recombination lifetime. This

mechanism acts as an electrical switch to effectively turn off the PL of the dots.

The buffer layer’s thickness plays a crucial role in the internal charge dynamics
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Figure 2.8 Top Left The structure of the QD sample used in this
research. Top Right The associated band structure as a function of
position along the axis normal to the wafer. The doped substrate pins
the Fermi level close to the conduction band, encouraging the production
of negatively charged dots. Bottom The effects of biasing the sample on
the band structure.
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Figure 2.9 p-i-n type QDs use n-type, p-type and
insulating GaAs layers to alter the charge dynamics.
The types of exciton charge species which will be excited
can be modified during MBE growth by altering the
distance of the dot layer from the conducting layers. Top
A quantum dot which will tend to capture electrons and
emit photons from negatively charged excitons. Bottom
A quantum dot which will tend to capture holes and
emit from positively charged excitons.
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of the QD. At a lesser thickness like the one in our sample, the bottom of the QD

conduction band potential well dips into the Fermi sea, charging the dots with elec-

trons. In this configuration the dots tend to form more negatively charged excitons.

Increasing the thickness brings the valence band maximum at the dot layer closer to

the Fermi level, reducing this effect. Note the buffer layer is the first section of the

sloping bands and the N+ GaAs is the flat section. A thicker buffer layer would push

the center of the QD energy closer to the Fermi level, reducing their tendency to form

negatively charged excitons and increasing their tendency to form positively charged

ones. By reducing the capping layer thickness and growing p-type GaAs on top, it

is also possible to form QDs where the valence band touches the Fermi sea rather

than conduction band, which would tend to produce positively charged excitons. See

figure 2.9. Such p-i-n QDs can be tuned during fabrication to prefer certain charged

species of excitons.

2.5 Chapter Summary

This chapter provided a brief review of some of the theoretical topics related to

the research performed in this work. We started with a brief discussion of classical

electrodynamics and simple polarization models. We then discussed the problem of

plane wave scattering at a planar interface. The results of this solution were then

generalized and applied to the problem of a surface guided wave. We found that

such a propagating wave exists only in the TM polarization and only at the interface

between two materials where the real part of the dielectric function changes sign.

Such a wave is called a surface plasmon polariton. We then invoked some of the

results of previous sections to discuss some of the properties of such a wave.

The discussion then pivoted to a review of the behavior of electrons in crystalline

matter. We discussed the band theory of solids, and the idea of electrons and holes

which carry charges in these bands. Then we reviewed the concept of excitons and
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considered the effects of quantum confinement of excitons. We talked about the

different possible dimensionalities of such a confinement and mentioned their effects

on the density of electronic states. Finally we examined the self-assembly of quantum

dot structures in the Stranski-Krastanov MBE growth mode. In the next chapter,

we will discuss the fabrication of these types of QDs into a hybrid plasmonic device

and the experimental techniques we used to probe and characterize this device.
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Chapter 3

QD/plasmonic hybrid device

In this chapter I describe the setup for the experiments described in this work.

The first section details the processes involved in the fabrication of the hybrid plas-

monic/QD device which we have investigated. The fabrication strategy was to litho-

graphically define the shape of the plasmonic features, etch into the capping layer

to get closer to the dots, deposit a silver film into the etched pattern which would

support plasmonic modes, lift off the resist, and coat the rest of the wafer with a

semi-transparent layer of chromium to form a Schottky diode. The chromium pro-

vides an electrical gate while still being semi-transparent, giving us the ability to

excite and study the dots optically while allowing some control over the internal field

and therefore the exciton charge species which form. After affixing the sample to

a chip carrier and connecting the top and bottom surfaces to electrodes, we then

have a completed hybrid plasmonic/QD device with an electrical gate allowing the

application of an external bias across the sample.

The last section details the setup of the micro photoluminescence experiment

which was used to characterize the device. It describes the optical setup we used to

both excite and collect the QD signal, and how we exerted control over the param-

eters of the laser excitation, such as incident polarization and incident power. After

describing how we fabricated the sample and collected the data, the next chapter will

begin detailing what we found.
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3.1 Sample fabrication

3.1.1 Wafer preparation

The original sample came as 1/4 of a circular wafer, cut from a 2 inch wafer. From

this I diced a small sample a few mm on each side. It is important when using the

following method of dicing to be sure to start with a clean soft surface, such as lens

paper, and clean microscope slides. The slides should be cleaned with methanol and

dried before beginning. This will remove any residue or dust from the glass. Failure

to do this may result in scratches on the surface of the sample.

Dicing was performed with a diamond scribe and some microscope slides. Using

a microscope slide as a straight edge, I marked the area to be cut with the scribe.

After this step, compressed air should always be used to blow away any dust to avoid

scratching the sample. I then placed the marked sample between the large faces of

two microscope slides, with their edges aligned with the scratched line of the sample,

such that the bulk of the sample was firmly held in place between the slides, while

the section to be cut protruded out from between them. A third microscope slide

was placed over the protruding section in order to distribute the applied force over

its surface. Lightly pressing down on the top of one of the slides to hold the sample

in place, I used the blunt edge of a pair of tweezers to tap the other slide until the

sample broke. It tends to break right along the line of the inscription.

After dicing, the sample went through a standard cleaning procedure, sonication

in acetone, rinse in IPA or methanol, dry with compressed N2, in that order. In order

to remove any stubborn organic residue and to get an optimally clean top surface,

the sample was dipped in a 3% mixture of HCl and water for a few seconds. This

was followed by a rinse in distilled water and another drying with N2.
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Figure 3.1 The ideal structure of the QD sample after completion of
fabrication. (Not to scale) After lithographically defining the features, the
capping layer was etched down to 100nm. Inside the pattern we deposited
100nm of silver. After liftoff of the PMMA mask we deposited 5nm of
chromium to complete the Schottky diode. The Cr layer is semi-transparent
while the silver is opaque. The electrical gate gives us some control over the
charge states of the excitons which form in the dots. The experiment was
performed by exciting the dots close to the silver structures as shown in the
picture. We also collected control data by exciting far away from any silver.
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3.1.2 Electron-beam lithography

As a mask for electron-beam lithography (EBL) we used poly-methyl-methacrylate

(PMMA) with a molecular weight of 950k dissolved as 4% of an anisole solution.

However, the sample I cut was too small to cover the O-ring on the spincoater, so

I first used a thick layer of PMMA, spun at 1000rpm, as an adhesive to attach the

sample to a one inch Si wafer. A 5 minute bake at 180◦C is sufficient to harden the

resist layer. After the sample was attached to its holder, I used the spincoater to

apply a 200nm thick layer by spinning at 3500 rpm. The spin curve, which details

the resultant film thickness as a function of angular velocity, can be found online at

the manufacturer’s website. The sample was then baked again to finalize the resist

layer on top of the sample. When attaching the sample to the sample holder for the

scanning electron microscope (SEM) it is important to ground the top surface of the

sample to the metallic sample holder with conductive tape since the Si and PMMA

layers will not allow excess charges to escape. Failure to do so will result in poor

imaging as the beam imparts too much charge onto the surface of the sample. The

charge cannot escape fast enough, and since the imaging is enabled through charge

scattering off the surface of the sample, image quality suffers.

Our decision to use a single layer of 950K PMMA is not typical with many EBL

processes. One often finds the use of double layers, with higher molecular weight

PMMA deposited atop another layer of PMMA with a lower molecular weight, such

as 495K. We chose our procedure for the following reasons. Higher molecular weight

tends to produce less of an undercut, i.e. it forms more vertical sidewalls in the mask.

Typically, if one is depositing thin films into a patterned mask atop a substrate, this

can be undesirable because PMMA is very sticky. The deposited material can be

pulled off of the sample along with the mask during the liftoff procedure if they are

in contact with each other. To avoid the possibility of any deposited film touching

the sidewall of the high molecular weight PMMA mask, it is advisable to put a low
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molecular weight layer underneath it, which will form an undercut and leave a gap

between the deposited film and the PMMA sidewall.

However, since we decided to first etch into the substrate before depositing any

metal, and since our target film thickness was less than the target etch depth, the

metal should be deep inside the etched groove and should not be able to contact

the PMMA. Therefore liftoff should not cause any such issue. Furthermore, the

lack of sidewalls is exactly what we want, especially since our etch procedure is

isotropic. Etching under a mask with an undercut would significantly widen the

features we were trying to create, lowering the resolution we could obtain. Since this

is undesirable, we decided to use a single layer of high molecular weight PMMA for our

mask. In this way, we achieved the higher resolution offered by the higher molecular

weight PMMA, but with reliable patterning of deposited films. Despite this different

approach, I still used the standard exposure and development procedure. This should

also be optimized to take the thin single layer resist into account. It may improve the

achievable resolution for future samples if using the PMMA and wet etch procedure.

We also acquired another e-beam resist, Zeon Chemicals ZEP520A, which is more

suitable for dry etching. The process for exposure and development using ZEP520A

resist should also be studied and optimized. In general ZEP requires less exposure

dose than PMMA. I have also found it is quite common for cracks to form in the

resist during development, although it doesn’t appear to have much effect on the

subsequent etch. This may be due to the fact that I was using the same developer

for the ZEP instead of the official recommended developer. The ZEP resist in general

was less easy to use compared to PMMA, and often the resist layer was just not as

clean as PMMA consistently was. Part of this may be because I was depositing a

much thicker layer than what I used for PMMA. For PMMA the layer thickness is

irrelevant because the wet etch does not attack the resist, so using a very thin layer

is acceptable. Using ZEP and dry etching this is not the case. Unless you use a very
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hard mask, the dry etch procedure will attack the resist as well as the substrate, so

it is necessary to use a thicker layer.

The microscope used for EBL was a Jeol JSM-840A. Lithography was performed

with 30keV electrons at a working distance of 8mm. To achieve maximum resolution I

used the lowest current setting which was measured at 3pA. After EBL was complete,

the sample was removed from the SEM and the sample holder. The pattern was then

developed in a mixtures of one part methyl isobutyl ketone (MIBK) to three parts

isopropanol (IPA) for 30s, rinsed in IPA for 10 seconds, and dried with compressed

N2, completing the mask for etching.

3.1.3 Wet chemical etch

In order to get the plasmonic structures closer to the QDs we etched away part of

the capping layer using the lithographically defined pattern as a mask to preserve

the capping layer elsewhere. In this sample we etched 180nm of capping layer away

leaving 100nm of capping layer. This is just inside the range of influence of the

plasmonic fields [75], but should avoid significant weakening of dot confinement.

The etch was performed in a weak acid solution containing 495 parts distilled

water, 1 part phosphoric acid (H3PO4), and 4 parts hydrogen peroxide (H2O2). The

acid itself does not attack the substrate, but it will attack any oxides formed on

the substrate. GaAs itself does not have a natural oxide, but the oxidizing agent

does produce small regions of oxides of Ga and As separately, which the acid carries

away. This solution achieved an etch rate of 0.5 nm/s. The etch was performed for 6

minutes, followed by a rinse in distilled water and quick dry with N2.

An ideal fabrication procedure would be done with a dry etch procedure, e.g. reac-

tive ion etching (RIE). RIE uses a gas which ionizes to form reactive compounds under

the influence of an RF electromagnetic field. The field drives the reactant up and

down repeatedly while mostly avoiding the sidewalls, achieving a highly anisotropic
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etch. The etch procedure described in this section is more isotropic in nature, mean-

ing it tends to etch laterally at the sidewall as well as downwards. This leads to the

possibility of gaps between the silver structure and the GaAs sidewall, which would

weaken the confinement of nearby dots if done too close to the dot layer. Further-

more, it limits the resolution of the lateral dimensions of our plasmonic structures,

making it difficult if not impossible to fabricate certain types of interesting structures,

e.g. metal-insulator-metal (MIM) type features which can couple plasmonic modes

on two nearby metal surfaces. All attempts to do this resulted in the middle layer of

GaAs being etched away.

The proper gas chemistry for RIE of GaAs however involves the use of chlorinated

gases. These gases tend to be highly toxic and require special equipment. An alter-

native we found is the use of Freon-12, with chemical formula CCl2F2, a formerly

common refrigerant which is not dangerous to human health. However production

was banned due to its effects on the Earth’s ozone layer. The absence of ready avail-

ability of these gases at our facilities constrained our ability to optimize the sample.

Future studies seeking to improve on the design of a similar device should absolutely

be done with samples fabricated at facilities with the proper equipment to optimize

the etch profile.

PMMA provides a very poor mask for RIE due to insufficient selectivity against

the substrate. RIE tends to etch the entire mask away before the desired etch depth

is achieved on the substrate. We attempted RIE with a Zeon Chemicals’ ZEP520A

mask, which is another polymer. Several attempts at using fluorinated gases failed to

etch deep enough, and appeared to saturate at around 100nm of etching. This may

be due to polymerization of the capping layer with compounds from the plasma.

An attempt was made to use the proper gas chemistry at a facility at Clemson

University, but this did not work out either, as we were already running low on

samples. We brought several samples with larger features to test the etch first, with
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Figure 3.2 A perfectly isotropic etch profile leads to various
problems with the device. The thinning of the capping layer above
the dots just next to the silver can possibly weaken their
confinement. The lack of proper sidewalls also severely limits the
possible resolution of the etched features. To get a good etch
profile with vertical sidewalls, anisotropic etching must be used.
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the goal of quickly using their profilometer to measure the etch rate. However there

is an effect called micro-loading, where the plasma can saturate depending on the

dimensions of the feature being etched, resulting in an etch rate depending on feature

size. Using the assumption of equal etch rates which we measured for larger features

to etch the smaller pattern resulted in insufficient etch depth. Properly measuring the

etch rate would require fabrication of a large number of identical patterns, and using

proper topography techniques to accurately measure the etch rate. The profilometer

needle is too big to fit the 1 micron sized features in our pattern. AFM is also tricky

on polymer resists due to the stickiness.

3.1.4 Thin film deposition

Plasmonic structures were created by thermal deposition of silver at ultra high vac-

uum. The sample was loaded into a chamber which was pumped to approximately

2 µTorr. A tungsten boat loaded with silver pellets was fastened between two elec-

trodes. A current of 130A ran through the boat by applying a 20 V potential across

it. The Ag evaporated onto the sample at a rate of 15 Å/s until a thickness of 100

nm was achieved.

The sample was then removed from the deposition chamber for the liftoff proce-

dure. Sonication in acetone, followed by another IPA rinse and N2 dry removed the

PMMA film with the silver still attached on top of it, leaving only the silver slabs in

the trenches of the pattern formed by the previous etch.

To complete the gate we deposited another thin film of chromium. This layer

must be very thin to remain semi-transparent in order to allow optical probing inside

the sample. Deposition proceeded at 0.2 Å/s until a thickness of 5 nm was achieved.

Cr makes a Schottky contact with GaAs with a barrier height of about 0.41 eV,

thus completing the Schottky diode structure. In order to avoid excessive oxidation

it is important that liftoff and deposition of the final Cr layer proceed immediately
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following the silver deposition. The Cr forms a seal which should prevent further

oxidation of the silver.

3.1.5 Bonding the sample

After the completion of the fabrication process, the sample must be attached to a

chip carrier. Silver paste dissolved in toluene can form a quality Ohmic contact on

the bottom surface, which is already conductive due to the excessive doping. Better

contact can be formed by first melting Indium across the bottom surface of the sample.

However I found this was not necessary. It’s only effect seemed to be a compression

of the range of bias voltages needed to span the space of emitting exciton states.

Without the Indium however, the necessary range of voltages was not excessive. A

reverse bias between 2-3 V was sufficient to stop PL emission.

Ideally, wire bonding to the Cr on the top surface will provide an electrode con-

nected to the Schottky contact on the top surface of the sample. I found it is often

very difficult to get the thin gold wires which I used to stick to such a thin Cr layer.

Sometimes I had to resort to placing a small spot of silver paste on the top surface

and then manually insert the wire into the paste with tweezers. In this case, it is

very important that the paste does not spill into the etched pattern, or it can short

out the diode, ruining any bias control.

In either case, both electrodes should be tested for contact before proceeding.

Sometimes wires that looked perfectly connected to their pads showed infinite resis-

tance, so the bond was broken somewhere even though it was not visible. Testing

the bottom contact is straightforward. The bottom surface of the chip carrier and

the chosen electrode to which it is bonded should be easily measurable with a stan-

dard multimeter. The top surface is trickier, but it should have a measurable finite

resistance also.

At room temperature, thermal noise in the PL spectrum can wash out the signal

63



www.manaraa.com

Figure 3.3 Top Left An optical micrograph of the completed sample
showing the embedded silver structures. Bottom Left An AFM scan of the
topography of one of the trenches. Right A cross section of the
topography verifying an approximate depth of 80nm.
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from the QDs making characterization very difficult. To ameliorate this effect, we

cooled the sample in a Montana Instruments Cryostation closed-loop cold finger cryo-

stat to a temperature of 4K. This cryostat has transparent windows allowing optical

probing of the sample. The electrodes gating the sample were attached to one of the

internal voltage sources of a Stanford SR830 lock-in amplifier.

3.2 Confocal micro PL experimental setup

In this section I will describe the optical setup of our experiment. We performed

photoluminescence characterizations of the sample with two different energies, one

above and one below the low temperature band gap of GaAs. The results of these

experiments will be discussed in the following two chapters.

3.2.1 Optical setup

Our source for both experiments was a fiber coupled CW laser. The laser first passed

through a filter to remove extraneous noise and ensure excitation under a narrow

frequency band. Especially important is the elimination of any frequency components

in the range of the QD emission, which may be mistaken for signal. A short pass

filter is therefore sufficient as well.

Downstream, a pair of linear polarizing films allowed us to adjust the polarization

of the incident beam. Between them we placed a half waveplate (λ/2) which rotates

the beam polarization. This setup gave us control of the beam intensity by aligning

or separating the beam’s polarization from the orientation of the second polarization

filter. This trio of optical devices gave us, in addition to the electrical gate bias, two

additional degrees of freedom in the experiment, the laser probe’s incident power and

polarization.

The laser was focused onto the sample with a Mitutoyo infinity corrected NIR

50x microscope objective with a numerical aperture of 0.42 and a working distance
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Figure 3.4 A 3D model of the confocal photoluminescence microscopy
setup. The fiber coupled laser beam passes through a collimator, line
filter, linear polarizer 1, half waveplate, linear polarizer 2, beam splitter,
and finally through a microscope objective focusing onto the sample inside
the cryostat which is cooled to a temperature of 4K. The signal is
collected by the same objective and split off by the beam splitter before
filtering out the incident beam. The remaining signal is passed to a
spectrometer and CCD for analysis (not shown).
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of 17mm. The objective is mounted on an assembly consisting of three linear stages

with a set of three 0.5" metallic mirrors all set at 45 degrees to the direction of the

beam’s incidence upon them, redirecting it at right angles. This assembly gives us

the ability to pan the beam spot across the surface of the sample while maintaining

focus and normal incidence.

The beam was focused to a spot on the order of a micron. The resolving power

of the objective is quoted at 0.7 microns. Photons incident on the QD layer excite

electrons out of the QD valence band. Their destination depends on the energy of the

incident photons. For photons with energies below the band gap of GaAs, the electron

can only be excited into the QD conduction band, and excitons will form. For photons

with energies above the band gap of GaAs, the situation is more complex. Electrons

can be excited well into the continuum where they are no longer confined by the dot.

In this case, there is also an absorption of the beam by the encapsulating GaAs, which

injects large numbers of carriers there as well. This leads to the formation of electron

and hole plasmas inside the wafer, with complex interactions. However electrons do

still relax to lower energy states becoming trapped inside the dot. Again they form

excitons with the other holes trapped there.

As the density of QDs in the sample is such that even a small spot of this size tends

to excite multiple dots, the detailed analysis of the energy landscape of individual

dots presents an arduous undertaking. A PL spectrum taken at one location with a

micron sized beam spot can show a large number of peaks corresponding to all the

dots being excited during the same time period over which the signal is integrated.

Nevertheless we were able to distinguish charge state transitions within single dots

with this configuration. We were able to do this because of the sharp transition in

PL energy which occurs when the applied bias changes enough to alter the exciton

charge species forming there. Comparing this shift in PL energy, corresponding to a

change in the binding energy of the carriers in the exciton, to previous work mapping
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out the states in these kinds of dots gave us strong evidence that we were seeing a

single dot change its charge state, and not two separate dots.

The NIR signal emitted by the QDs was collected by the same objective and

split off with a non-polarizing beamsplitter. A 900nm long pass filter eliminated any

remaining laser light and other higher frequency noise from the sample. See figure

3.4. The signal was passed to a 1m spectrometer where it was spectrally resolved

with a 1200 grooves/mm grating onto a CCD. The signal was integrated over each

column of pixels in full vertical binning mode. This setup was able to achieve an

approximate spectral resolution of 0.1meV.

All data presented in this thesis were taken under the following conditions. The

width of the slit on the spectrometer opening was set to 0.1 (angular units). The

signal was spectrally resolved with the 1200 grooves/mm grating in the spectrometer.

The Andor Newton CCD which converted the PL signal to electrical data was cooled

to -70◦C. Full vertical binning mode was used. The integration time was always 5

seconds, which is much longer than the recombination lifetime of these types of QDs,

on the order of 1ns.

3.2.2 Polarization dependence

In order to define the two polarizations, TE and TM, we must first set the plane of

reference. The silver structures are most extended along one particular axis. The

plane of reference is the cross-sectional plane defined by its normal vector which

points along this direction. With this definition, TE will mean light polarized with

the electric field oscillating along the length of the structures, and TM will be light

polarized such that its electric field oscillates perpendicular to this, parallel to the

structure’s shorter top surface axis. See figure 3.5. The laser spot, being of a size on

the order of the width of the silver structures, will extend slightly past the sides of

the silver structures. It will thus be able to couple to SPP modes running down this
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Figure 3.5 Top Sketch of the effects of incident polarization. We
expected TM polarized excitation, when done on the silver, to also
launch SPPs down the side of the silver structures. The corner of the
film causes some dispersion and allows the phase matching condition
necessary to launch SPPs. Bottom FDTD simulations confirm that large
electric fields near the surface of the silver are expected for TM
polarization, but not TE.
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edge, but if and only if the light is polarized in the TM configuration.

Figure 3.5 shows the anticipated effect of the silver slabs upon beam incidence.

When the laser beam is in the TE polarization, the electric field lines run parallel to

the long axis of the metal surface, transverse to the cross-sectional plane of symmetry.

In this case the electric field tends to simply diffract around the edge of the silver

with little effect. Any SPPs launched in this configuration due to the coupling of

the incident light to the inherent surface roughness of the top surface of the silver

must launch along that surface, so the SPP field would point away from the dots and

should not effect the QD PL emission.

On the other hand, when the laser shines upon the silver in the TM configuration

the electric field lines run perpendicular to the shorter length of the top surface of

the silver, and diffraction tends to rotate the field lines as the light passes around

the top corner of the silver. This allows the phase matching condition necessary

for the launching of SPP waves along the side of the silver film. The bottom of

figure 3.5 shows an FDTD simulation confirming this hypothesis. The SPP modes

greatly enhance the electric fields at the surface of the silver, with the wave bending

around and under the silver structure as well. These strong fields, extending in the

direction of the QD layer, and having large gradients, can couple to the dots. The

carriers forming the exciton inside the quantum dot will respond to ambient fields by

reconfiguring the electron and hole wavefunctions. This can alter the dipole moment

and binding energy of the exciton, which would alter their PL emission characteristics.

The effects of the coupling between the SPP waves and the excitons in the QDs

should manifest as a polarization dependence in the PL signal collected from dots

near the silver, as only one polarization produces these extra ambient fields. This

idea is the main topic of this thesis. Since the QDs are axially symmetric we do

not expect other polarization dependent effects due to their shape. A QD which is

oblong would have different dipole moment magnitudes when oriented along different
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axes due to the anisotropic confinement. This would cause different exciton binding

energies, and thus a doublet splitting in the PL emission spectrum of a single dot.

The symmetry of these dots is such that any such splitting is well below the spectral

resolution we are capable of observing, and such an effect will not be observed. There

may be a difference in the diffracted field intensity due to the polarization dependence

of diffracted beam intensities around the silver. This will be discussed in the following

chapters.

3.3 Chapter Review

In this chapter I detailed the fabrication process from the point which I started,

which is the MBE grown self-assembled QDs given to us by workers at NRL. The

process I embarked on included lithographically defining microscopic features, etching

those features to reduce the QD capping layer, implanting silver structures to support

SPP modes, liftoff of the PMMA mask, and finally deposition of a semi-transparent

chromium layer to supply a Schottky contact for internal field manipulation. I tried

to provide additional details for future students to explain why we made the choices

we did, and point out any pitfalls which they should be aware of in case they run into

similar issues.

After this I detailed the experimental setup for collecting photoluminescence data

from this hybrid device. This included cooling the sample in the cryostat and opti-

cally addressing it with a microscope objective. Signal was collected back through

the same objective and sent through a beam splitter before being filtered and spec-

trally resolved. Additional polarizers and a half waveplate offer control over two

tunable experimental factors, incident polarization and power. This setup is rela-

tively straightforward. Future studies in this work involving time domain resolution

will involve more detailed setups.
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Chapter 4

Above band gap PL characterization

In this chapter I will discuss the results of characterization of the sample with a

green 532nm fiber coupled CW laser using the PL experimental setup described in

the previous chapter. The choice of excitation wavelength so far below the wavelength

of the near-infrared (NIR) emitting QDs allows us to easily filter the incident beam

from the signal and isolate the QD signal from any background coming from the

incident beam.

The energy of 532nm photons is about 2.33 eV. This is well above the low tem-

perature GaAs bandgap, which is about 1.52 eV. The light therefore tends to be

absorbed into the GaAs capping layer, exciting a large numbers of carriers up into

the continuum of the GaAs conduction band. This introduces additional complexity

in the microscopic exciton formation and recombination dynamics. Essentially we are

dealing with a many body problem involving multiple scattering processes.

The carrier dynamics in the photoluminescence process can already be quite com-

plex. In cases where the excitation frequency is far above the resonance of the QD

exciton, it is not as simple as electrons jumping up to the conduction band of the QD

and falling back down to the valence band. The excited electrons are pushed well into

the continuum and must first relax non-radiatively to be trapped by the InGaAs dot,

before relaxing to its lowest unoccupied state, where it can then enter the bound state

of other trapped carriers. With above band gap excitation there are large numbers of

excited carriers, so at the microscopic level the problem quickly becomes intractable.

Even when excitation is on-resonance, there can be multiple relaxation pathways,

72



www.manaraa.com

some of which may be and some may not be radiative, so the picture of simple

photon absorption and re-emission is deceptively simplistic. On-resonance excitation

also requires more complex time-domain spectroscopy experiments, since a CW laser

source operating at the same energy as the QD transitions would completely drown

out any signal. In this experiment, however, this was not a problem, and we were able

to resolve individual exciton states and observe bias dependent transitions between

charge species when exciting on the silver.

4.1 532nm CW laser micro PL spectrum

We first began by collecting simple PL spectra from the quantum dots, both on and

away from the silver structures, changing only the polarization, while holding other

parameters like incident power and applied bias fixed. The goal was to observe any

change in the PL spectrum due to the presence of the silver slabs, and we found these

changes to be significant. We collected PL spectra for both TE and TM polarizations

to observe what effects may arise due to the launching of SPPs along the sides of the

silver structures, an effect which is polarization dependent. This was repeated away

from the silver to confirm that indeed the dots exhibit no polarization dependence of

their own due to their axial symmetry.

As mentioned, above band gap excitation injects large numbers of carriers into

the conduction band of the surrounding material, altering the conductivity and car-

rier interactions inside the wafer. Dense electron and hole plasmas have complex

interactions, so we are not able to model the microscopic dynamics leading to exci-

ton formation in the InGaAs cores with this setup. Due to the thick capping layer,

the situation is the worst away from the silver structures where the QD signal is

significantly broadened and washed out, almost completely lost in the background.

However, when exciting on the silver structures the PL signal is much improved, and

we were able to isolate single exciton charge states.
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Figure 4.1 The effect of the metal structure on the PL signal of the QDs.
(Top) Away from the silver. The QD signal is washed out and barely visible
when exciting through the entire capping layer. The difference between the
polarization is due to a slight power mismatch from unstable laser
operation. The shapes are nearly identical. (Bottom) Exciting on the silver.
This produces clear bright peaks exhibiting the discrete nature of QD
states. There is also a clear polarization difference in some of these peaks
due to launching of SPPs along the side of the silver film.
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Figure 4.1 shows how different the typical QD spectra look when the dots are

excited away from (top) and on (bottom) the silver structures with the green laser.

When shining away from the silver, it is difficult to discern any QD signal at all. In

contrast, the signal from the excitation on the silver shows clear discrete emitting

states, typical of exciton recombination in QDs, although still slightly broadened

when compared to the below bandgap excitation which will be discussed in the next

chapter. This dramatic difference in PL response arising from the choice of excitation

location is likely due to the difference in thickness of the capping layer. Away from

the silver, the light must pass through the full 280nm i-GaAs capping layer, which

absorbs more light there and injects more carriers into the plasmas before light can

even reach the dot layer. Beneath the silver, only 100nm of GaAs remains before the

light reaches the QD layer, and therefore fewer carriers are expected to be present

overall.

Another effect which, under proper conditions, can cause an increase in QD PL

signal is an enhanced radiative recombination rate due to the alteration of the local

density of states arising from the introduction of nearby plasmonic modes, which

provide additional relaxation mechanisms. However, the type of PL enhancement

typically occurs when the dots are deep in the range of the SPP fields. At a distance

of 100nm from the silver to the QDs this is unlikely to be the case [75]. The peak

number of counts are not drastically different in either case. The most noticeable

difference between the two graphs is the extreme narrowing of the QD peaks when

exciting on the silver. Since this happens under excitation with both TE and TM

polarization, this effect cannot be due to the launching of local SPPs on the silver

film.

We also see, when exciting on the silver, there is also a distinct polarization de-

pendence, which is not observed when exciting away from the silver. As previously

mentioned, the dots are largely axially symmetric and any splitting due to the break-
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ing of this symmetry is expected to be well beneath our spectral resolution. The

symmetry breaking factors must arise from the etch profile and the silver, specifically

from the excitation of local plasmonic fields upon excitation by light in the TM po-

larization. There is a small polarization dependence in the upper graph (away from

the silver), but this is a result of slightly unstable operation of the laser running at a

power which is lower than what it was designed for, and possibly sub-optimal coupling

of the laser into the single mode fiber we used. The overall shapes are almost exactly

the same. This is not the case with the signal collected from excitation directly on

the silver. In that case, there are clearly peaks with dramatically more signal in one

polarization than the other and some which appear to have shifted in their emission

energy. In reality, this is not due to an energy shift of the same state, but the same

dot has changed its emitting exciton charge species, as we will see. The different

charge species have different binding energies, as extra local carriers affect the local

binding potential. This causes the light to emit at different wavelengths when the

exciton recombines.

We also wanted to investigate other polarization dependent effects to have more

control data for comparison. The PL data which we had already taken away from the

etched features (figure 4.1 top) provided us with an idea of how the dots behave with-

out altering the capping layer, and without the effects of nearby plasmonic modes.

However, it does not tell us about the effects induced by the change in the wafer

geometry due to the introduction of the etched groove structure itself. Diffraction

tends to be polarization dependent, so the possibility arises for polarization depen-

dent photon injection into the sample, which would of course lead to polarization

dependent signal.

In order to investigate this, we fabricated another sample in which some of the

grooves were not filled with silver. While the grooves did not have the silver film,

the sample was still coated with a few nm of Cr to produce a Schottky contact. The
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Figure 4.2 PL taken from another sample with empty grooves. The nominally
empty grooves do still contain a thin Cr layer. Although they exhibit some
degree of polarization dependence, only the silver structures create the drastic
polarization dependent shifts in the energy of the emitting states, which we
therefore attribute to the launching of local SPPs in the vicinity of the QDs.
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alternative was to lithographically define the structures, etch the capping layer, and

then produce a 2nd mask, aligned with the already defined structures, to block the

evaporation of Cr into the them. We decided this would prove too formidable a task

to accomplish in a reasonable time period, especially with the equipment which was

readily available for our use. The grooves thus were fabricated with no silver, but did

contain a small amount of chromium embedded in them. Even with the absence of

the 100nm of Ag, it may be possible that this thin Cr layer could also lead to local

launching of SPPs in the chromium, which might have effects on the PL spectrum,

so this sample was not ideal for our intended purposes. Nevertheless we found a clear

difference between the grooves with silver and those without, as shown in figure 4.2.

The results show a slight dependence on polarization when exciting on the nomi-

nally empty grooves, with TM polarization tending to produce slightly more signal.

Note that there do not appear to be any peaks which have shifted their energy. The

only difference is in the intensity of the emitted signal. This effect may be due to plas-

monic modes in the Cr, or diffraction related effects may prefer to transmit one type

of polarization more than the other due to the shape of the groove. However, given

the consistent background level between the two polarizations this seems unlikely.

Surface roughness induced during the etch procedure could also be a contributing

factor to both diffraction and plasmonic effects. In any case, the difference between

the signal from the empty grooves and the silver filled grooves is unmistakable. Only

the Ag filled structures show the dramatic shift in PL energy for some particular

states.

We therefore must conclude that the energy shifts, which we see when exciting the

sample over the silver structures, are primarily due to the launching of SPPs in the

silver films, and do not arise from any other symmetry breaking factor. Furthermore

the reduction in signal which we observe appears to arise from the reduced thickness

in the GaAs capping layer, which tends to absorb the incident light and inject carriers
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into its continuum of states. The next step in the investigation of this sample was

to observe the effects of changing the other parameters of the experiment on the PL

signal.

4.2 PL dependence on applied bias

To further investigate the PL emission characteristics, and the effect of the local

SPP fields, we obtained PL data as a function of the external bias applied across

the sample. The electrical gate across the wafer, comprising the silver paste Ohmic

contact with the N+ GaAs base on the bottom and the semi-transparent chromium/i-

GaAs Schottky contact on the top of the wafer, gives us this method of control,

allowing us to apply an electric field through the sample and change the exciton charge

species which are confined in the QD. This effect occurs due to band bending of the

conduction band towards (or away from) the Fermi level, resulting in confinement of

extra (or fewer) electrons in the dots. These types of MBE QDs can be engineered

to favor certain charge configurations by careful placement of the dot layer in the

diffusion region. A thicker buffer layer places the InGaAs further along the sloping

bands and brings the Fermi level closer to the valence band than the conduction

band, producing more positively charged excitons. This particular sample used only

a 40nm buffer. It therefore tends to produce more negatively charged excitons. See

section 2.4.2 for more details.

The PL data is now presented as a function of two variables, emitted photon

energy and applied bias. Each data set was also collected at different incident powers

and of course for both TE and TM polarizations, to infer SPP induced effects. Data

are represented as color maps with emitted photon energy on the horizontal axis and

applied bias along the vertical axis. The picture can be thought of as a collection of

rows of pixels, where each row is a single PL spectrum at a fixed voltage, e.g. what we

saw in figure 4.1. The height of each pixel is mapped to a particular color. In general,
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the brighter the pixel, the more counts present. Thus bright lines represent the path

of a particular emitting peak over a range of voltages, and dark areas represent

background areas with little signal. The peaks are not perfectly aligned with the

vertical axis. They tend to drift as the voltage progresses. This is due to a linear

Stark shift, changing the exciton dipole charge separation, and therefore the exciton

binding energy and emission energy, as the field strength changes.

The range of voltages over which each individual species tends to form in a partic-

ular dot are largely disjointed. In other words, given a particular dot, each individual

charge species tends to emit from only its own range of applied voltages, where no

other species will form for that particular dot. However, this transition will occur at

different voltages for different dots and charge states, as it depends on the shape and

size of the dot and the confining potential. There are small regions of overlap as the

binding energy shifts over to the new state, but the distinction between the different

states is clear.

Figure 4.3 shows the PL spectrum at a particular excitation location on the silver

as a function of applied bias, for both TE and TM polarization, and for two different

beam powers, 3µW and 15µW . We see in this data the characteristic signal of a

transition between two different exciton species, probably X−1 and X−2. A more

detailed study would have to be performed to confirm the exact charge states, so we

will simply call them X1 and X2. However the exact details are not relevant in this

case. The important point is that the uniformity in the signal intensity between the

two states and the characteristic transitional behavior is strong evidence that they

are in fact two different charge states emitting from the same dot.

Of particular note is the polarization dependence of the magnitude of the necessary

applied bias to force the exciton charge species transition to occur. At 3µW this

transition happens at an approximate bias of -0.3V for the TE polarization, while for

TM polarized excitation a -0.5V applied bias is needed. Note that the lines appear
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to have shifted downward when the polarization is changed.

We attribute this shift to the effects of the local plasmonic fields generated by the

incident TM wave on the silver-GaAs interface, producing large local electric field

gradients in the region by launching SPPs down the interface. The plasmonic effect

on the system is an induced electrical screening of equivalent to a field which would

be produced by an additional 200mV of reverse bias. A similar effect is the power

tuning which causes a similar shift downward in the exciton transition voltage. This

can be observed in figure 4.3 in the shift downward of the same transition between

the two different powers with polarization fixed. It occurs for both polarizations.

This is due to the injection of a larger number of carriers which act to screen the field

coming from the applied bias.

Nearby we see many other excitons with much dimmer signals. These are likely

coming from dots further away from the silver structure, as the laser spot has a

Gaussian profile and its intensity falls off rapidly from the center. The fact that

many of these dots do not share the same polarization dependent features and are

likely outside of the range of influence of the plasmonic fields gives further evidence

that the effects we are seeing on dots nearer to the silver are indeed due to the SPP

field. They do however exhibit the power tuning effect as expected.

This effect is perhaps unexpected. The SPP consists of oscillating charges fields.

The electric field will change directions over time, and intuition may suggest that

the average over time should be 0. Yet what we observe seems to imply a DC field

produced by the SPPs. It is possible for materials to produce DC fields as a second

order nonlinearity, through the self mixing of a single frequency component. We

believe however that what we observe is simply an effect from increased screening of

the carrier plasmas by the strong SPP field gradients. We will see in the next chapter

that no such DC shift occurs when excitation is performed below the band gap of

GaAs.
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Figure 4.3 Bias dependent PL maps with 532nm excitation. The two states in
the blue oval exhibit the characteristic signal of a transition between two charge
species within a single dot. This transition occurs at a deeper reverse bias for
TM than for TE under the same incident power. This effect is similar to the
power tuning effect where a larger reverse bias is required at higher incident
powers. This can be seen in the downward shift of the same transition as
incident power is changed while holding polarization fixed.
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4.3 PL dependence on incident power

We next investigated the PL response of the sample as a function of incident power.

As mentioned in the last section, there is an effect dependent on the incident power

which is similar to the SPP induced tuning of the applied bias at which the exciton

charge state transition occurs. This power tuning effect also causes a similar shift

downward in the exciton transition voltage. Intuitively this makes sense, since larger

incident powers of high energy photons inject more carriers into the continuum caus-

ing a screening effect on the electric field due to the applied bias, thereby requiring a

larger externally applied bias to achieve the same internal field and exciton dynamics.

This effect can be seen in figure 4.3 in the difference between the 1st and 3rd plots

which both use the same polarization at the same location with different powers.

Similarly the 2nd and 4th plot show the same effect with the other polarization. We

investigated this effect in more detail at the same location to better understand the

power dependence of this transition for each polarization by collecting a PL map as

a function of power at a fixed bias of -1V. The results are shown in figure 4.4.

The same exciton species are indicated in the figure. This is an interesting result.

Not only does the polarization affect the required bias to effect this transition at a

fixed power, but it also affects the required power to cause the same transition at

a fixed voltage. Moreover the range of powers over which this transition occurs is

stretched out in the case of TE polarization. For TM this transition occurs near 20

µW of incident power, whereas for TE the transition begins around 40 µW but is not

fully complete until about 60 µW.

At low powers, the same X2 state is emitting from both polarizations. At high

powers, both polarizations emit from the X1 state. The power is high enough to inject

carriers that screen out the internal field and drive photo currents through the wafer

as the plasmas try to reach equilibrium. However there is an intermediate range of

powers, around 30 µW, where the emission is entirely confined to the X2 state for
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Figure 4.4 The same charge state transition shown in the previous section.
The sample is now held at a fixed voltage of -1V as the power is changed. Left
The same transition is induced via power tuning only. The dependence on
polarization is apparent. The transition occurs much sooner for TM polarized
excitation than TE. Right Two slices show the individual spectra at fixed
powers of 11µW and 32µW. At low power, both polarizations produce the X2
type exciton. As power is increased, TM excitation screens out the field first
switching the state over to the X1 type exciton, while TE is still emitting the
X2 type exciton at the same power. Changes in the emitting state can thus be
induced all optically, by changing the polarization.
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Figure 4.5 Top The energy of the X1 and X2 peaks of emission vs.
incident power. Bottom The same plot with the TE power reduced by a
factor of Kp (the purple curve), which is a power function of the abscissa
values with exponent 0.76. This shows the apparent power law behavior
of these states under the influence of the SPP field.
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TE polarization and the X1 state for TM polarization, as shown in the inset in figure

4.4.

This suggests a new switching mechanism for photon sources utilizing these types

of emitters, a mechanism which is all optical and might not be constrained by the slow

switching speed of electronics. However, we should stress that it is not necessarily

the case that this mechanism offers switching on an ultrafast timescale typical with

traditional photonic devices, as the diffusion of charge carriers in the material still

plays a significant role in the process. Further studies are required in the time domain

to investigate this question.

We have also found that the effect of this SPP induced power dependent shift

in the emission of these two states appears to follow a power law. In figure 4.5 we

plot the central energy of this particular dot vs. incident power for both TE and

TM polarizations. When the power of TE is rescaled according to a power law with

exponent 0.76, the data appear to overlap. This shows that the power tuning effect

is nonlinear, as eventually the level of carriers will be sufficient to completely screen

the internal fields. The wafer is essentially metallic at this point. The presence of

the local SPP fields allows us to get the same screening effect as power tuning but at

much lower powers.

4.4 Summary of results

In this chapter we studied the PL characteristics of the hybrid plasmonic/QD sam-

ple, the fabrication of which was thoroughly discussed in the preceding chapter. This

chapter focused on excitation with photon energy above the band gap of the encap-

sulating GaAs. We first noticed the dramatic tightening of the QD peak signal when

exciting on the silver vs. away from the silver. This is likely due to the decreased

thickness in the capping layer, resulting in fewer carriers being injected into the sam-

ple. Away from the silver the thick capping layer injects in too many free charges,
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resulting in too many carrier collisions washing out the QD signal.

We then performed PL studies as functions of incident power and applied bias.

We found an effect due to the launching of SPPs which acts to screen the internal

field. This effect manifests itself in the PL bias maps as a shift in the voltage at which

a transitions occurs between different charge states in a single dot. A similar power

tuning effect occurs due to the increase in incident power. By combining the two

effects, we found it possible to control the exciton charge state optically in a single

dot simply by controlling the incident polarization, as the fields are screened at much

lower powers in the presence of the SPP field. In the next chapter we will discuss PL

characterization of the sample with energy below the GaAs bandgap.
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Chapter 5

Below band gap PL characterization

This chapter will focus on the results of the PL characterization of the same hybrid

plasmonic/QD device discussed in the previous two chapters, only now with photons

of energy less than the GaAs band gap energy, but still of sufficient energy to excite

excitons in the InGaAs cores. The experimental setup is identical to the previous

chapter except for the change in the excitation source and the replacement of any

wavelength dependent optical components, the 532nm laser line filter, the half wave-

plate, and linear polarizers. The laser used was an 880nm fiber coupled NIR diode

laser, which produced a slightly larger laser spot when focused, but still on the order

of a micron.

5.1 880nm PL results

Exciting below the band gap introduces some important differences in the exciton

dynamics compared with the 532nm excitation. It allows direct excitation of the

QDs without inducing extraneous interband transitions and the resultant injection of

large numbers of charge carriers into the surrounding medium. This should and did

eliminate the power tuning effect on the charge state transition which we discussed

in the previous chapter on above band gap excitation. As this effect was a result

of carrier screening, it did not appear in the absence of extra carriers, as expected.

Another result of fewer carriers is a much cleaner signal with more narrowly defined

peaks. Without such dense electron and hole plasmas causing complex many body

scattering interactions, the broadening of the signal which we observed in the last
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chapter did not occur. We were able to excite and observe the QD signal through

the entire capping layer, with fine peaks observable even outside the range of the

plasmonic silver structures.

Although we freed ourselves of the influence of the GaAs carrier background, this

did not come without a cost. Photons at a wavelength of 880nm have sufficient

energy to excite the QDs. They are also able to excite the wetting layer underneath

the dots (see section 2.4.2), which is essentially just an InGaAs quantum well (QW).

The signal is therefore sitting atop a large background from the influence of this

layer. However, the QW PL is very broadband and thus easily separable from the

very narrow QD transitions. We observed only the tail end of this background and

estimated it by fitting a simple exponential curve underneath the peaks, as shown in

figure 5.1

Again we compared the PL signal when exciting on the regular substrate far

away from any silver and when exciting directly onto the silver structures. As in the

previous case, we observe almost no difference between the signal when excitation is

performed in either the TE or TM configuration, as expected due to the symmetrical

shape of the QDs. When we excite on the silver however, we do note a difference

between the two polarizations. Here the effect is different than before.

Again, as before, we collected bias dependent PL maps for each polarization. The

results are consistent but different than in the case of above band gap excitation.

There is a clear dependence on polarization that emerges when we excite on the

silver slabs, as expected. However with below band gap excitation, this manifests

instead as a reduction in PL intensity in the TM configuration compared to the

TE configuration. Note that this is the opposite of the effect we saw when exciting

above band on the empty grooves. In that case we also noted a similar effect where

one polarization produced consistently brighter peaks, but in that case it was TM

producing more signal. Now TE polarized excitation is producing more signal. Also,
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Figure 5.1 Top left The typical 880nm PL signal away from the silver
structures. Top Right The typical 880 PL signal when exciting on the silver
Bottom row The results after subtracting a simple exponential fit representing
the tail end of the quantum well background from the InGaAs wetting layer
under the dots.
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Figure 5.2 A selection of bias dependence PL maps for 880nm
excitation, two on the silver, and two away from the silver. The results
show the lack of polarization dependence absent the silver, and a
reduction in PL signal intensity on the silver for TM compared to TE
excitation.
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as expected, without the large number of carriers to screen the internal field, there are

no noticeable shifts in the transition voltages between exciton charge species. More

in depth studies are needed to probe what exactly is going on here, and why TM is

producing less signal than TE, but we will discuss this polarization dependence in

some depth in the next section.

5.2 Discussion of polarization dependence

We note a marked decrease in the intensity of emitted PL when excited in the TM

configuration on the silver structures. When SPPs are also launched in the vicinity

of the dots with below band gap excitation, something we did not previously observe

happens. We appear to lose signal. This decrease is consistent across the majority of

the emitting states. Furthermore, we see from figure 5.1 that the level of background

due to the wetting layer excitation is equivalent between the two polarizations.

This polarization dependence is further quantified in figure 5.3. We find that,

when exciting the bare sample, the asymmetry between the PL intensities from the

two polarizations are centered around 0, with a standard deviation of 0.056, 71.9% of

states lying within 1σ and 97.9% of states lying within 2σ (represented by the gray

bars). In contrast, when exciting on the silver, there is a clear and significant skew

towards TE, an average of 0.141, and a standard deviation of 0.063. Now, using the

gray bars we find only 38% of states within 1σ and 59.5% of states within 2σ, where

σ is the standard deviation of the data collected away from the silver. Furthermore,

we observe that the only states which tend to emit stronger in the TM configuration,

i.e. those below the grey bars in the bottom right plot of figure 5.3, also tend to emit

weaker, i.e. they are towards the left when plotted against the maximum intensity.

With above band gap excitation we were able to observe the effects of SPP fields

on the local carrier environment in the bulk GaAs. Now all carriers are confined to

the InGaAs layer, burying deeper in the sample. In this case, the SPP fields are
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Figure 5.3 The polarization asymmetry of the PL intensity from a large number
of states excited both on (bottom) and away from (top) the silver, shown vs the
energy of the peaks (left) and the larger value of the two intensities (right).
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more remote and the effects may be more subtle and difficult to discern. In order

to further investigate the polarization dependent effects we are seeing we obtained

FDTD simulations of this experiment.

Figure 5.4 shows an FDTD simulation of the diffracted field intensity after a

plane wave makes contact with a geometry approximating the silver structures in our

sample. In the TM simulation the SPP wave can be seen propagating along the side of

the silver slabs and going around the corner underneath the silver as well. The exact

shape of the GaAs capping layer etch profile can affect the resulting field intensities

somewhat, so there is some uncertainty here. The bottom part of the figure shows

cross sections of the field intensity going down from the corner of the silver, and also

out away from the silver at a depth which should be coincident with the InGaAs

layer. These domains are shown by the white dotted line, which start from the corner

of the silver. Of particular note is the large increase in TE intensity in the range

150nm to 400nm away from the edge of the silver structure. This difference peaks at

about a 50% increase for TE over TM near 300nm from the edge.

It may be tempting to write off the decreased signal for TM polarization as an

effect due to the diffraction of the beam profile around the edges of the silver structure

and the resulting larger incident intensity for TE polarized light. It is likely this

difference in field intensity plays some effect locally. However, one would expect

the wetting layer background to be proportional to the integration of the local field

intensities across the beam spot area. Let’s consider two possibilities.

In the first case, the TE signal is simply brighter because of higher local intensities

across the majority of the beam spot, and this is the only factor. Then we would

expect, perhaps certain areas show more intense signal for TM than TE, but overall

most of the emitting peaks are taller for TE excitation. This is consistent with figure

5.3. However, once we integrate the local field intensities over the laser spot, this

consistently higher TE local field intensity should result in an overall larger wetting
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Figure 5.4 Top FDTD simulations for the field intensity of TE and
TM plane waves diffracting around a rectangular silver slab. The
corners of the GaAs have been slightly rounded off. Bottom Horizontal
and vertical cross sections of the above plots starting from the corner
of the silver. The sliced area is shown by the dotted lines in the top
graph.
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layer background under excitation by TE light. This is not observed in figure 5.1.

In the second case, the TE signal is brighter in some areas and the TM signal

is brighter in some areas, but the average integration over the beam spot leads to

nearly equal background levels. In this case, then we would expect to see some TE

peaks brighter than TM, but also the opposite in roughly equal amounts for those

dots in regions where TM field intensities are higher. Thus we should see a spread in

the data of figure 5.3, but not a systemic shift overall. But this also is not what we

observe.

Since we do see a systemic shift, without a commensurate increase in the wet-

ting layer background, then it casts doubt on the notion that this can be entirely

explained by diffraction related effects. What we see is a near universal decrease in

the emitted PL intensity for the vast majority of exciton states when excited in the

TM configuration, but with a nearly equal wetting layer background. We are led to

conclude the following; the decrease in signal under excitation in the TM polarization

cannot be entirely explained by a difference in local intensity of the incident field im-

pinging upon the dots due to a polarization dependent change in the diffracted beam

profile, but must be in some part due to some other symmetry breaking factor. That

symmetry breaking factor is the presence of the SPP field.

The FDTD simulations also make the assumption of an incident plane wave,

which may affect the resulting beam intensity profiles. In reality the laser beam spot

is approximately Gaussian leading to a sharp attenuation of the intensity away from

the edge of the silver. Given that the beam was focused to a spot size on the order

of a micron, only slightly larger than the silver structures, it is unclear how a more

realistic simulation of the incident light source would affect the field intensity profile

at the dot layer.

As one final piece of evidence, we observed a very subtle shift in many of the peaks

when exciting on the silver structures. The shift was typically only a single pixel on

96



www.manaraa.com

Figure 5.5 Samples of typical PL spectra taken on and away from the silver.
Inset Zoomed in plot of a couple of the peaks from the excitation on silver. We
observed several peaks which appear to have shifted very slightly in their emission
energy. Such an effect cannot be explained by a difference in field intensity. Only
a change in the internal charge configuration of the dot can cause such a shift.
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the CCD, barely within the resolution of our experiment, on the order of 0.1meV.

The effect was typically a blueshift in the TE excitation data. These shifts did not

appear as often when exciting away from the silver. This effect, if real and not a noisy

artifact of our limited resolution, simply cannot be explained by a slight difference in

incident beam intensity. A larger intensity simply excites the dot faster, generating

more recombination events. It does not change the internal energy of the exciton

dipole. Only an effect which alters the charge configuration inside the dot, such as

coupling to SPP gradient fields, can explain such a shift. Given our limited spectral

resolution, further studies are warranted to investigate this effect more thoroughly

for better confirmation. By moving the plasmonic fields closer to the dot layer, this

effect may be amplified.

However we do think overall there is strong evidence that the consistently weaker

PL signal of the QDs in the TM configuration is due to an effect of the SPP field on

the carriers forming the exciton. One possibility is the interaction of the local SPP

field with their electric mesoscopic moment. On the atomic scale, QD nanocrystals

are not really point-like particles. Due to their extended nature, the point dipole

approximation can break down in the presence of strong field gradients [75]. Calcu-

lations must consider the coupling between the SPP field and the QD’s mesoscopic

dipole moment. Phase differences between the dipole coupling terms and terms cou-

pling to higher pole moments can lead to constructive or destructive interferences,

changing the outgoing signal intensity.

5.3 Summary of results

We performed similar experiments on the same sample from the last two chapters,

changing the excitation source to have energy below the band gap of GaAs. By

using a wavelength of 880nm, we avoided the problem of carrier injection and signal

broadening which we saw in the last chapter. This also eliminated effects due to the
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presence of free carriers which we observed last chapter, such as the power tuning

effect and the SPP-induced screening effect. The effects of the SPP fields in this case

are more subtle. This is not unexpected since these effects now arise from the direct

coupling of charges inside the QDs themselves to the SPP field which is relatively far

away. In the previous chapter the SPP field was coupling to much closer carriers in

its local dielectric environment, and the effect was more pronounced.

PL data from below band excitation show consistently lower signal when exciting

on the silver in the TM configuration compared to the TE configuration. While

FDTD simulations appear to explain this effect as a difference in transmitted intensity

at first glance, we believe there is good evidence that we are seeing another SPP

induced effect on the PL signal. First the wetting layer background is consistent

across both polarizations, which would not be expected if the incident intensities

were actually different. This error may be due to plane wave assumptions in the

simulation. Second we observed tiny shifts in energy, just at the resolution of our

experiment, in the emitted PL signal energy. Such an effect cannot be explained by a

difference in intensity, but can be explained by charge reconfiguration from coupling

to SPP fields.
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Chapter 6

Summary and future directions

In this work, we investigated two different types of nanoscale optically active sys-

tems, self-assembled semi-conductor quantum dots and SPP supporting plasmonic

structures. Specifically we looked at the interactions between the two systems and

what happens when they are brought close enough together to influence each other.

We found interesting new effects arising from the electromagnetic fields of the SPPs

which alter the distribution of carriers inside the QD wafer.

When exciting above the band gap of the encapsulating GaAs, we found a new

screening effect induced by the SPP fields. The action of this effect was to reduce the

influence of applied fields, requiring larger external biases with SPPs than without

them to achieve a similar internal environment. A potential application was sug-

gested, an all optical method of exciton charge state switching, which may or may

not be faster than directly appliying fields with electronics.

We also investigated the interaction in the case of below band gap excitation. In

this case we found that the effect of the local SPP fields was to reduce the emitting PL

signal from the dots. Furthermore, we saw hints of slight energy shifts in the exciton

recombination energy, just at the limit of our spectral resolution, which would provide

further confirmation that the effects we see arise directly from the SPP fields and not

from a polarization dependent diffracted beam field profile. In the future, the coupling

between these two types of systems must be well understood for precision engineering

of nanophotonic devices utilizing them.
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6.1 The future of the technology

This work represents a small step towards a large undertaking, the thorough under-

standing of the various complex interactions between nanophotonic components, with

the aim towards future complex integrated devices. A thorough and deep knowledge

must precede any attempts at building practical device prototypes. As technology

continues to progress in performance and functionality, so too advances its complexity

and the requirement of technical proficiency, and ultimately its cost of fabrication.

Even with a valid working prototype design, the economics of mass production may

ultimately decide the fate of any new technology. At this point in time, the field is

simply too young to precisely predict what its future will look like with any confi-

dence. Ultimately the aim of scientific academic scientific research is to simply gain

a better understanding of the structure of nature, and leave the concerns of practi-

cality to the next generation of engineers. But with so much work going into creating

fascinating technological devices of the future, like optical cloaking devices, clearly

nanophotonics and plasmonics will have a bright future in some capacity.

6.2 Future research directions

The work presented in this thesis can be immediately extended and further verified.

Further studies should focus on implanting similar structures closer to the dot layer.

We strove to do this but complications due to the lack of proper equipment for

dry etching of GaAs have delayed this goal. Future samples will likely have to be

taken to specialized facilities for this purpose, although we are awaiting a new sample

from NRL with a 100nm capping layer that may permit a similar experiment with the

simpler wet etching procedure. The isotropic nature of wet etching prevented us from

etching deeper into the thick capping layer without sacrificing the confinement in the

immediate area around the silver. With a thinner capping layer, this problem may
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be avoided, although at very close proximities to the QDs, even small anisotropies

may prove too much.

If we can get closer we expect to verify similar but stronger effects. Verification

of the exciton energy shift which we observed with below band gap excitation should

be a priority. At very close distances we may see quenching of the PL signal due to

tunneling of the carrier out of the dot. There has also been a theoretical prediction of a

strong coupling regime at extremely close proximity between the dot and plasmon [76],

where the exciton dipole interacts with it’s image charge in the plasmonic structure.

Verification of this phenomenon would be a major result. One of the ultimate goals

is to attempt to couple photons from the plasmonic state back into a QD. If this

is possible then perhaps it could allow plasmonic structures to act as waveguides

coupling two QDs, or the QDs may act as a gain medium to overcome the inherent

lossy plasmonic propagation. Ultimately, a long term goal would be coupling two

QDs such that one dot may be excited and transfer it’s exciton over to another dot

with the SPP acting as a mediator of this exchange.

In order to verify other expected effects which cannot be resolved by relatively sim-

ple PL experiments, the time domain should be investigated. Exciton recombination

lifetime enhancement immediately comes to mind, as it has been observed in related

systems previously [59, 60, 61]. Experimental setup will be more complicated in this

case and may involve single photon correlation measurements, wave pulse shaping

techniques, and/or pump-probe spectroscopy. These techniques were not used and

therefore not discussed in this work, but I’m sure Yanwen would be happy to explain

them.

Alternative silver structure shapes can also reshape the plasmonic fields possibly

leading to new interesting effects. Sharp corners, e.g. in the bowtie geometry, can lead

to very intense near fields. Metal-insulator-metal structures can change the direction

of the field lines and also split the plasmonic modes due to the symmetric degeneracy,
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possibly affecting the exciton dipole in different ways. It would also be interesting to

make small silver nanoparticles whose resonance overlaps with that of the QD.

Another technique for growing similar QDs has been demonstrated which does

not self-assemble on top of a wetting layer, but involves fabricating small pits which

capture the dot material into nanoparticles [77]. In this method the fabrication can

be planned in advance to put emitters in precise locations rather than the randomly

distributed the SAQDs we used. The implantation of silver structures in this sample

will be much more involved, and extreme care must be taken in order to align the

pattern with the pre-existing distribution of dots. Isotropic wet etching simply is not

going to cut it here. The fabrication is ultimately the most difficult part of this entire

process.
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